هستی شناسی در مکتب قرآن

قرآن دفتر هستی نظری است که به هستی واقعی میپردازد. هدف آن است تا بدانیم در این دفتر چه خوراکهایی برای ذهن ما تهیه شده که تاکنون از آن غافل بواه ایم.

هستی شناسی در مکتب قرآن

قرآن دفتر هستی نظری است که به هستی واقعی میپردازد. هدف آن است تا بدانیم در این دفتر چه خوراکهایی برای ذهن ما تهیه شده که تاکنون از آن غافل بواه ایم.

زندگی ابدی! افسانه یا واقعیت؟


زندگی ابدی! افسانه یا واقعیت؟

 

 

استیون هاوکینگ، کیهانشناس برجسته و دانشمند سرشناس بریتانیایی، در حاشیه اکران فیلم مستندی درباره زندگی خود گفت که حیات پس از مرگ افسانه است؛ وی در عین حال زندگی ابدی انسان را از طریق کپی کردن مغز بر روی رایانه ممکن دانست.

 

نویسنده کتاب «تاریخچه مختصر زمان» در ادامه با طرح موضوع امکان زندگی ابدی بشر به کمک علم افزود: «فکر میکنم مغز مانند یک برنامه در ذهن است که آن نیز شبیه به رایانه عمل میکند. از این رو، از دیدگاه نظری این امکان وجود دارد که مغز را روی رایانه کپی کرد و نوعی از زندگی پس از مرگ را به وجود آورد

هاوکینگ در عین حال اذعان کرد که چنین چیزی هم اینک «ورای توانایی ها و وسعت [کنونی] دانش بشری است.» وی همچنین تصریح کرد که "در تمام طول عُمرم با تهدید مرگ زودرس زندگی کرده ام، برای همین از اتلاف وقت بیزارم"

در فیلم مستند «هاوکینگ» که روایتگر داستان زندگی این کیهانشناس و فیزیکدان نظری است، وی میگوید که از مرگ نمیهراسد. هاوکینگ پس از اولین نمایش فیلم در سخنان خود با اشاره به موضوع مرگ و تلقی خود از نیستی و عدم گفت که حیات پس از مرگ افسانه ای برای مردمانی است که "از تاریکی میترسند".

 

روشنگری:

آقای هاوکینگ سال گذشته نیز خدا را انکار کرده بود که نه از سوی خداباوران در هیأت دین بلکه از سوی خداباوران دانشمند پاسخ او داده شد. زندگی او مصداق این مثال است که خدا گر ز حکمت ببندد دری ز رحمت گشاید در دیگری. ولی وی قدر این رحمت خداوندی را ندانسته و در سرانه پیری پای خویش را فراتر از طبیعت نهاده و به ماوراء طبیعت به گونه ای وارد شده که موجب افسوس میشود. 

وی به زندگی پس از مرگ اعتقادی ندارد ولی از آنجا که چنین اعتقادی به پوچگرایی و نیهیلیزم ختم میشود راه چاره ای اندیشیده و چیزی گفته و راهی پیشنهاد کرده که از یک دانشمند بعید به نظر میرسد: کپی کردن مغز بر روی رایانه!!

 

چنین سخنی از یک دانشمند و در این عصر که دانشمندان به کلونینگ دست یافته اند و توانسته اند حیوانهایی را شبیه سازی کنند و اگر اخلاق جامعه جهانی به آنان اجازه داده بود میتوانستند انسان را نیز شبیه سازی کنند و معتقدند حتا میتوان با دی ان آی یک موجود مرده همان موجود را بازسازی کرد چنین سخنی بی معنا و مفهوم است.

 

به نقل قرآن کریم اعتقاد به رستاخیز از سوی کافران نفی میشده و با برگرفتن یک تکه استخوان و نشان دادن به پیامبر اکرم میپرسیدند چه کسی میتواند این استخوانهای پوسیده را دوباره زنده کند؟ اما در این دوران دانشمندان با روش کلونینگ به کافران تمام اعصار و قرون آموختند که بله از دی ان آی همان استخوان پوسیده ما میتوانیم صاحب آن استخوان را بازسازی کنیم. 

از سوی دیگر مغز آدمی به اعتقاد دانشمندان چنان پیچیده و دارای قدرت بسیار شگفت انگیزی است که هیچگاه نمیتوان مکانیزم عملکرد آن را با عملکرد چندین رایانه بسیار پرقدرت و سریع مقایسه کرد. اگر روش پیشنهادی هاوکینگ متصور باشد کامپیوترش را هم باید خداوند درست کند نه انسان.

 

پس هاوکینگ بر چه مبنایی این اظهارنظر نامعقول و غیرعلمی را بیان داشته است؟

هشتم مهرماه 92- احمد شماع زاده 

چهارپایان ویژه قرآنی (کروموزومها)


چهارپایان ویژه قرآنی

(کروموزومها)

 

احمد شمّاع‌زاده

 

عنوانها:

دو آیة بنیادین

روزنــة امیــــد

رهنمودهای قرآن

انــســان در قـــرآن

مراتب آفرینش

افـلایـتـدبـّرون‌الــقـــرآن؟

چهارپایان ویژه، کروموزوم‌هایی درشت‌اندام

جوینده یابنده است

چهارپایان ویژه، تکثیر به روشی دیگر

دستاوردهای علمی به زبان انگلیسی

متن انگلیسی پیرامون کروموزومهای درشت

 

 

از سالهای نوجوانی، به‌هنگام خواندن قرآن، هرگاه به آیه‌های شش سورة زمر و یازده سورة شوری می‌رسیدم که هر دو در مورد زادوولد مردمان است، و به مراحل جنینی آنان می‌پردازد، ذهنم متوجه این نکته می‌شد که این «انعام»، همان انعام سورة «انعام» به معنای ‹شتروگاووگوسفند› نیست؛ بلکه موجودی است که چهار دست‌‌وپا دارد و خداوند با این نامگذاری می‌خواهد ذهن ما را متوجه و منعطف به موضوعی کند.

 

دو آیة بنیادین

خلقکم من نفس واحده‌ثم‌جعل منها زوجها و انزل لکم من‌الانعام ثمانیه‌ازواج یخلقکم فی بطون امهاتکم‌خلقاًمن بعدخلق فی ظلمات‌ثلاث ذلکم‌الله ربکم له‌الملک لااله‌الّا هو فانّی‌تصرفون(زمر:6)

ترجمة واژگانی: آفرید شما را از جانی یگانه، سپس قرارداد از خود آن، جفتش را. و فروفرستاد برای شما از چهارپایان، هشت جفت. می‌آفریند شما را در شکم‌های مادرانتان آفرینشی پس از آفرینشی، در تاریکی‌های سه‌گانه. آن است خداوندی که پرورندة شماست. از آن اوست هستی. نیست خدایی جز او. پس به کجا می‌روید؟(دست به دامان که می‌شوید؟)

 

فاطرالسموات والارض جعل لکم من انفسکم ازواجا و من الانعام ازواجا یذرؤکم فیه لیس کمثله شیء و هوالسمیع‌البصیر(شوری: 11)

ترجمة واژگانی: شکافندة کیهان(که با شکفتن، کیهان را ایجادکرده)، قرارداد برای شما از خودهاتان، جفت‌هایی؛ و از چهارپایان، جفت‌هایی؛ بارورمی‌سازد شما را در آن(چهارپایان). نیست همانند او چیزی؛ و او بسیارشنوای بسیار بیناست.

 

روزنة امید

ماه‌ها و سال‌ها می‌گذشت تا روزی که دایره‌المعارف «بریتانیکا» پیش رویم باز بود؛ توجّهم به چیزی جلب‌شد؛ و آن تصویر تشریحی کروموزوم با دو بازوی بلند (Long arms) یا پاها، و دو بازوی کوتاه (Short arms) یا دستها، و یک بخش مرکزی(centromere) بود. درست مانند ‹شتروگاووگوسفند› که چهاردست‌وپا دارند؛ بسیار شاد شدم و یقین‌کردم که معنی ‹انعام› در این دو آیه ‹کروموزوم› است؛ که این معنی با دیگرواژه‌ها و معنای کلی این آیه‌ها نیز همخوانی دارد و مانند ترجمه‌های قرآن نیست که شتروگاووگوسفند یا دامها هیچ‌جای منطقی در این دو آیه و نیز در مراحل جنینی ما ندارند.

یاداوری: شکلی را که در زیر می‌بینید، شکلی نیست که در بریتانیکا هست، و از منبعی از اینترنت به تازگی گرفته‌شده؛ البته این شکل گذشته از شکل کلی کروموزوم، اجزاء آن را نیز  نشان‌داده‌است.

 

رهنمودهای قرآن

تا اینجا تنها نیمی از مسأله حل‌شده‌بود؛ زیرا در آیه شش سوره زمر، اشاره به ‹هشت‌جفت انعام› شده و حال آنکه انسان ‹بیست‌وسه جفت کروموزوم› دارد؛ ولی همین هم یک نکته است؛ زیرا اگر خداوند اشاره به 23 جفت انعام‌ می‌کرد، چه بسا خوانندة امروزین قرآن کریم، خیلی زود به معنی این آیه‌ پی‌می‌برد؛ ولی در آن صورت، قرآن مجید تنها یک نکتة علمی را بیان‌کرده‌ و بهرة دیگری نرسانده‌بود. اما این کتاب آسمانی بااشاره به هشت جفت، نه تنها ما را به اهمیت کروموزوم‌ها آگاهی‌داده و به درون هیأت آنها واردکرده، بلکه خوانندگان خود را به اندیشیدن پیرامون این هشت‌جفت فراخوانده و در اصل دستورداده بروید کندوکاو‌کنید تا بدانید چرا توجه ویژه‌ای به این هشت‌جفت دارم و ویژگی‌های آنها چیست‌، تا در زندگی‌تان به‌کاربرید.

 

از سوی دیگر، در این آیه واژة انزل (صیغة گذشتة مصدر انزال) به‌کاررفته، که شگفت‌انگیز است. آیا خداوند این هشت جفت انعام را از فضای کیهانی فروفرستاده‌است؟

 

        هرگاه خداوند سبحان، خود را با عزّت و جبروت در ابتدای آیه‌ها و سوره‌ها یادکند، می‌خواهد نکته و امر مهمی را گوشزدکند. بنابراین هنگامی که «فاطرالسموات والارض» را در اول آیه و «لیس‌کمثله ‌شیء و هوالسّمیع‌البصیر» را در آخر آیه می‌آورد؛ یعنی نه کلمه از هجده کلمة یک آیه را به وصف خود اختصاص می‌دهد، نمی‌خواهد در آن آیه، امر ساده‌ای را به یادمان آورد که هر بچه‌‌ای هم آن را می‌داند: (خداوند شما و چهارپایان را جفت جفت آفرید تا به این تدبیر شما را خلق بی‌شمارکند)، که این وهن قرآن کریم است، و بسیار شایسته و بایسته است که از این گونه توهین‌ها نسبت به ساحت قدسی قرآن کریم جدّاً بپرهیزیم.

 

نکتة دیگری که می‌تواند علت بیان «هشت‌جفت» باشد، این است که این «هشت‌جفت» در بین کروموزوم‌های جن و انس مشترک باشد، زیرا در هر دو آیه، قرآن کریم مخاطب خود را مشخص‌نکرده‌، بنابراین مخاطب قرآن، هم انس و هم جن می‌تواند باشد؛ که قرآن برای آنان به گونه‌ای برابر، نازل شده‌است.

اگر در هر دو آیه بویژه از این دیدگاه دقیق‌شویم، متوجه‌می‌شویم که:

1. در این دو آیه خداوند اشاره‌ای به مایة اولیه خلقت انس و جن یعنی ‹خاک› و ‹حرارت› نکرده و قصد آن را دارد که نکته‌ای کلی و مشترک را یادآور شود؛ در حالی که در آیه‌های دیگر پیرامون انس و جن، اشاره به مایة اولیه آفرینش آنان نیز می‌کند و بدین وسیله مخاطب را مشخص می‌سازد.

2. سخن از این است که خداوند از جنس خودتان (ای جن‌ و انس) برای شما همسر آفرید؛ و تنها در هشت جفت از کروموزوم‌هایتان با یکدیگر مشترک هستید. یعنی تداخل  ژنتیکی شما دو نوع، امکان‌پذیر نیست و برخلاف آفرینش شماست.

3. شما را در انعام(کروموزوم) کشت می‌دهیم و بارورمی‌سازیم؛ همان‌گونه که دانشمندان نطفه را از طریق تکثیر و تقسیم سلولی کروموزومها در درون لوله آزمایش کشت‌می‌دهند و بارورمی‌سازند؛ و قرآن کریم چه واژة نیکو و مناسبی در این زمینه برگزیده‌است: «ذرء» و چه جمله نیکوتری: «یذرؤکم فیه».

 

انسان در قرآن

تاکنون کتاب‌های زیادی در مورد «انسان در قرآن» نگاشته‌شده؛ ولی تا آنجاکه دیده‌شده، هیچگاه نویسنده‌ای از این دو آیه در نوشتة خود یادنکرده ‌است؛ و اگر به ظاهر این دو آیه توجه‌کنیم، دستکم اشاره‌ای به انسان شده‌است؛ حتا اگر از این دو آیه یا یکی از آنها در کتاب خود یادکرده‌باشند، از این دیدگاه به آن نپرداخته‌اند. این آیه‌ها ما را به پژوهش در شناخت اصلی‌ترین اجزاء شکل‌گیری زندگان (کروموزوم، ژن، و دی. ان. آ) تشویق‌، و به دانش ژنتیک رهنمون می‌سازد.

 

درست است که پایه‌گذار دانش ژنتیک، ‹مندل› کشیش مسیحی است؛ ولی این دو آیه چیزهایی در خود نهفته‌دارند، که هنوز دانش ژنتیک به آنها دست نیافته، و بدین ترتیب ما را راهنمایی‌می‌کنند که بویژه، در مورد این هشت جفت کروموزوم به پژوهش بپردازیم و بهره‌ها برگیریم. هرچند اگر دانشمندان مسلمان در این دو آیه تدبرمی‌کردند، چه بسا پیش از مندل به دانش ژنتیک دست‌یافته‌بودند.

 

 

مراتب آفرینش

خداوند منان در آغاز سورة نحل پس از اینکه می‌فرماید امر خداوند فرامی‌رسد، پس در مورد آن شتاب‌مکنید و فرشتگان را به وسیلة کارمایه‌اش برای هر یک از بندگانش که بخواهد فرومی‌فرستد، مراتب آفرینش را با ترتیبی ویژه، و بسیار زیبا بیان می‌دارد؛ به گونه‌ای که خواننده‌اش علاقه‌مندمی‌شود آن را درک‌کند و از آن لذت‌ببرد:

اول آفرینش کیهان،

دوم آفرینش انسان،

سوم آفرینش چهارپایان در چهار گروه:

چهارپایان به معنای دام؛

چهارپایان برای سوارکاری و جابجایی اشخاص؛

چهارپایان باربر و بارکش؛

چهارپایانی که آنها را نمی‌شناسید. (مانند کروموزم‌ها ـ نقش کروموزومها در قرآن مرتباً پررنگ می‌شود. به نظرمی‌رسد باز هم می‌توان از آنها در قرآن نشان‌گرفت.)

چهارم ذکر نعمتهایی‌ همچون آب، گیاهان، میوه‌ها تا آخر آیة 17 این سوره.

 

 

افلایتدبّرون‌القرآن؟

الله نزّل احسن‌الحدیث کتباً متشابهاً مثانی تقشعرّ منه جلودالذین یخشون ربّهم ثمّ تلین جلودهم و قلوبهم الی‌ ذکرالله ذلک هدی‌الله یهدی به من یشاء(زمر: 23)

 

آنچه که ترجمه‌ها و تفسیرها پیرامون این دو آیه می‌گویند:

 

نکته ای که میتوان گفت هیچیک از مفسران قرآن تاکنون به آن توجه نداشته اند و موجب شده مترجمین قرآن در زبانهای مختلف از جمله زبان انگلیسی به پیروی از مفسرین به خطا بروند این است که از واژه انعام معنای "دام" را دریافت کرده اند. و این در حالی است که دام در زبان عربی "اغنام" معنی میدهد و نه انعام. اغنام جزئی از انعام است همان گونه که قرآن کریم نیز در آیات سوره نحل که در بالا آمد روی دسته بندی انعام  تأکید کرده و یکی از آن دسته ها را با اشاره به اینکه آنها را نمیشناسید یاداورمان شده تا در فهم دو آیه مورد بحث دقت بیشتری داشته باشیم که تاکنون نداشته ایم. توجه کنید:

 

1. تفسیر مجمع‌البیان طبرسی در مورد هشت‌جفت انعام، آنها را محل اختلاف‌نظر بین علما دانسته و مطالبی را آورده که برخی ترجمه‌ها از آن گرفته‌شده و در اصل چیزی برای گفتن به خواننده ندارد؛ و به نحوی از کنار آن گذشته‌است.

 

2.   تفسیر المیزان علامة طباطبائی

جلد 34 ص 59 ترجمة محمدباقر موسوی همدانی: «کلمة: (انعام) بمعنای شتر و گاو و گوسفند و بز است و اگر آنها را هشت جفت خوانده، به اعتبار روبرهم نروماده آنهاست».

جلد 35 ص 41 : «و معنای جمله: (جعل لکم من انفسکم ازواجاً) این شد که او شما را نروماده آفرید، تا با ازدواج آندو، مسئله توالد و تناسل و زیادشدن افراد صورت‌ گیرد، و معنای جملة: (و من الانعام ازواجاً) این شد که چهارپایان را هم نروماده آفرید، (یذرؤکم فیه) یعنی در این قراردادن، شما را زیادکند، و خطاب در جملة (یذرؤکم) هم بانسان است، و هم بحیوان، و ضمیر (کم) که مخصوص عقلاء است بگفتة زمخشری از این جهت بهمه برگردانید که جانب انسانها را غلبه داد».

 

3. قاموس قرآن در زیر نعم در چند جا آورده‌است که: «شتروگاووگوسفند(انعام ثلاثه) و مفرد ندارد بلکه همواره به‌صورت جمع به‌کاربرده‌می‌شود».

این نظر درست نیست؛ زیرا هرچند ‹انعام› به صورت جمع‌ به‌کاربرده‌‌شده، ولی همان جمعش نیز مفرد است؛ این موضوع را از ضمیر‌هایی که خداوند در مورد انعام ‹ویژه› و ‹فراگیر› به‌کاربرده می‌توان درک‌کرد. تقسیم‌بندی 33 بار تکرار واژة ‹انعام› در قرآن از نظر نوع آن به شرح زیر است: 

گونة فراگیر: شتروگاووگوسفندوبز

گونة ویژه: کروموزوم

در هر آیه‌ای که برای انعام فراگیر ضمیری به‌کاربرده، ضمیر سوم شخص مفرد مؤنث است؛ مانند: والانعام خلقها لکم فیها دفء

هر آیه‌ای که منظور آن انعام ویژه بوده، یا ضمیری ندارد؛ (البته این بدان معنا نیست که هرجا انعام ضمیر ندارد، ویژه است)؛ مانند: ثمانیه ازواج من الانعام و یا اگر دارد سوم شخص مفرد مذکر است؛ مانند: تنها آیه‌ای که اینچنین است: و من الانعام ازواجاً یذرؤکم فیه (دلیلی محکم بر ویژه‌بودن برخی ‹انعام›ها در قرآن)

در هر آیه‌ای که منظور هر دو گونة ویژه و فراگیر بوده، باز هم ضمیری به‌کارنرفته؛ مانند فرقان: 49 و شعراء: 133. اینکه چرا این دو آیه به هردو گونه اطلاق‌می‌گردد، بحث دیگری است.

‹قاموس› در ذیل بهم نیز آیات زیادی را آورده که انعام داشته‌اند و آنها را از زاویه‌های مختلف مورد بحث قرارداده، ولی به دو آیة منظور این گفتار، هیچ اشاره‌ای نکرده‌است.

 

4. ترجمة الهی‌قمشه‌ای: 

سورة زمر: و برای شما نوع بشر هشت قسم از چهارپایان ایجادکرد.

سه‌ اشکال این ترجمه:

‹نوع بشر› را از خود اضافه‌کرده و خطاب قرآن نیست.

‹ازواجاً› را به پیروی از طبرسی و بیشتر مفسرین، ‹قسم› یا ‹صنف› ترجمه‌کرده‌اشت.

‹انزل› را که به ‌معنی ‹فروفرستاد› است، ‹ایجادکرد› ترجمه‌کرده‌است.

سورة شوری: چارپایان را جفت (نروماده) آفرید تا به این (تدبیر) ازدواج شما را خلق بی‌شمارکند. در ترجمة این آیه، فیه را کاملاً از قلم انداخته‌است.

 

5. بیان معانی مفردات‌الکتاب‌العزیز چاپ سوریه، ناشر: دارالادیب للنشر والتوزیع:

من‌الانعام ازواجاً: اصنافاً ذکوراً و اناثاً. (از چارپایان نوع‌هایی، نرهایی و ماده‌هایی.)

یذرؤکم فیه: یکثرکم بسبب هذاالتزویج. (به‌سبب این ازدواج، شما را بی‌شمارکند.)

من‌الانعام: الابل والبقر و الضأن و المعز. (از شتر و گاو و گوسفند و بز)

این حاشیه‌نویسی بر قرآن، نزدیکترین است به ترجمة مرحوم الهی قمشه‌ای؛ و معلوم می‌شود که پایه‌وبنیان ترجمه‌ها و حتی تفسیرها، چه شیعی و چه سنی، تکرار سخن مفسرین بزرگ چندصدسال پیش است؛ و هیچ توجه ندارند که قرآن مجید با پیشرفت دانش بشری شکوفا می‌شود و فهمیدنی‌تر می‌گردد؛ چنانکه به‌هنگام اوج شکوفایی دانش‌ها و شناخت‌ها در عصر صاحب‌الامر(عج)، قرآن کریم نیز به اوج شکوفایی خود خواهد‌رسید.

 

6. بهاءالدین خرمشاهی نیز در ترجمة خود چنین آورده‌است:

سورة زمر: ‹برای شما هشت قسم از چارپایان آفرید›. که شبیه است به ترجمة الهی‌قمشه‌ای، و ‹انزل› را ‹آفریدن› ترجمه‌کرده، با این تفاوت که ‹نوع بشر› را نیفزوده‌است.

سورة شوری: از چارپایان نیز انواعی قرارداده‌است، و شما را در آن آفریده‌است.

در اینجا نیز مانند الهی قمشه‌ای و دیگران زوج را ‹نوع، قسم، صنف› ترجمه‌کرده و ذرء به معنی ‹کشت‌دادن› را با ‹آفریدن›، که ترجمة ‹خلق› ‌است جایگزین‌کرده‌است؛ و مشخص نیست ‹در آن› به که و چه برمی‌گردد.

 

7. ترجمة زیرنویس محمد‌کاظم معزی:

زمر: و فرستاد برای شما از دامها هشت جفت.

شوری: و از دامها جفتهایی؛ می‌آفرد شما را در آن.

این ترجمه هم مانند ترجمه‌های پیشین، انعام را ‹دام›، و ‹فروفرستاد›(ترجمة انزل) را ‹فرستاد› (ترجمة ارسل) و یذرؤکم را ‹می‌آفرد› ترجمه‌کرده‌است.

 

8. ترجمة زیرنویس به خط آقای مصباح‌زاده؛ مترجم آن مشخص نیست:

زمر: فروفرستاد برای شما از شتروگاووگوسفند هشت جفت.

شوری: قرارداد برای شما از خودتان جفت‌ها و از شتروگاووگوسفند جفت‌ها. بسیار می‌گرداند شما را در آن.

این ترجمه حتی به معنای ظاهری انعام (چهارپا) توجه‌‌نکرده، بلکه در دو آیه شتروگاووگوسفند را آورده، و معلوم نیست ‹در آن› به که و چه برمی‌گردد. تنها امتیاز این ترجمه آن است که انزل را درست ترجمه‌کرده‌است.

 

9. ترجمة محمدمهدی فولادوند:

زمر: و برای شما از دامها هشت قسم پدیدآورد.

شوری: و از دامها (نیز) نروماده (قرارداد)،‌ بدین وسیله شما را بسیارمی‌گرداند.

 

 

چهارپایان ویژه، کروموزوم‌هایی درشت‌اندام

سال‌ها گذشت تا اینکه روزی به یک دانشجوی دورة کارشناسی ارشد ژنتیک برخوردکردم و به او گفتم: «چند سالی است که به دنبال هشت‌جفت کروموزوم در بین کروموزوم‌های انسانی می‌گردم و می‌خواهم بدانم شما در مطالعه‌های خود تاکنون به هشت‌جفت کروموزوم برخوردکرده‌ای که ویژگی خاصی داشته و آنها را از دیگرکروموزمها ممتازکرده‌باشد؟ و برای اینکه از پرسش من شگفت‌زده نشود موضوع را با او درمیان‌گذشتم. او پاسخ داد: «بله وجوددارد»؛ و من بسیار شاد شدم. از آن دانشجو توضیح خواستم. وی توضیح زیر را بیان‌کرد و کتابی را در این زمینه به زبان انگلیسی معرفی‌نمود با عنوان Gene seven نوشتةB. Levin:

«انسان 23 جفت کروموزوم دارد که یک جفت بیست‌وسوم جنسی و 22 جفت دیگر غیرجنسی هستند. از این بیست‌و‌دوجفت، هشت‌جفت یعنی کروموزومهای شمارة یک تا شمارة هشت را کروموزم‌های درشت‌اندام(Giant Chromosome) گویند، که وظیفه تولید پروتئین‌های اصلی ساختمان بدن را برعهده دارند. جهش در این هشت‌جفت کروموزوم معمولاً غالب است و موجب حذف کامل یک صفت می‌گردد».

        پس از مدتی کتاب را به‌دست‌آوردم ولی مطلبی را که به ویژگی‌های این کروموزوم‌های درشت‌اندام بپردازد، پیدانکردم. به بخش ژنتیک دانشگاه تهران رفتم و موضوع را با رئیس بخش درمیان‌گذاشتم؛ ولی ایشان نیز اظهاربی‌اطلاعی‌کرد.

تنها چیزی که درست بود و نقشه‌های ژن‌های انسانی یا ‹ژنوم انسان›، گویای آن است و همه آن را قبول‌دارند، و همه می‌توانند آن را ببینند، این است که کروموزوم‌های یک تا هشت بسیاردرشت‌اند؛ و دریغا، که تاکنون پژوهشی ویژه پیرامون آنها از سوی ژنتیک‌دانی صورت‌نگرفته‌است.

 

جوینده‌، یابنده‌است

پس از گذشت چندین و چند ماه در روز هجدهم دی‌ماه هشتاد و چهار به ذهنم رسید واژه giant chromosome را در اینترنت جست‌وجوکنم؛ این کار را کردم و با شگفتی تمام با سه مطلب زیر روبه‌روشدم، وآگاهی‌یافتم که نامسلمانان مانند موارد دیگر پیش از ما مسلمانان که به قرآن بی‌توجهیم، به برخی ویژگی‌های این نوع از کروموزوم‌ها دست‌یافته‌اند؛ که برخی پژوهش‌هایشان در این مورد به سال 1939 بازمی‌گردد، ولی بیشترین یافته‌ها و نیز جایگیری آنها در اینترنت، مربوط به سالها و بلکه ماه‌های اخیر است؛ که البته این کروموزومهای ویژه هنوز جای کار بسیار دارند.

 

­­­-Chromosome 6, a giant chromosome that plays an essential

- Chromosome 6, mapped.

 

از جمله‌های آغازین این دو مطلب مشخص‌می‌گردد که یکی از ویژگی‌های نقش‌آفرین کروموزوم شمارة 6 را که بسیار هم ضروری است، کشف‌کرده‌ و نقشة آن را نیز کشیده‌اند. نقشة کروموزوم شمارة 6 را نگاه‌کردم، ولی بهره‌برداری مستقیم از مقالة بالا ممکن نشد.

مطلب سوم زیر عنوان ‹پلنت پلیتن کروموزوم› پژوهش‌هایی را که تاکنون روی ‹کروموزوم‌های درشت› صورت‌گرفته، به گونه‌ای گسترده، بررسی‌می‌کند. این پژوهش در سال 2000 پایان پذیرفته‌ ولی تاریخ ورودش به اینترنت احتمالاً سال 2005 است. زیر بخشهای مهم آن را خط‌کشیده، و برخی واژه‌های مهمتر را درشت کرده‌ام، که نظر به مفصل‌بودن، در پایان گفتار به صورت پیوست خواهدآمد. ترجمة دو پاراگراف برگزیده از این مقاله برای نشان‌دادن بخشی از اهمیت این نوع کروموزوم‌ها در اینجا آورده‌می‌شود:

 

Nag et al. (1985) described polygene chromosomes as giant chromosomes produced by changes in the mitotic cycle during the interphase stage. In such a modified nuclear cycle, the chromatin duplicates its DNA content during the G1 and S stages, but, instead of passing to the G2 stage, the nucleus initiates a new G1 phase, thus starting a new cycle of chromatin duplication. This type of cycle was first described in 1939 by Geitler.

Polytene chromosomes are structures found in highly specialized tissues in some animal and plant species, which are amplified through successive cycles of endoreduplication, finally producing several copies of each chromosome. For this reason, they have been very important in elucidating chromosome fine structure and physiology, especially in diptera.

 

ارنست نایگل دانشمند تطورگرا در سال 1985 توضیح‌داد که ‹پولیتن کروموزومها› یعنی کروموزوم‌های درشت با دگرگونی‌هایی در دورة میتوز، در طول مرحلة بین‌فازی، تولیدمی‌شوند. هستة این کروموزومها با سپری‌کردن کامل روش تقسیم سلولی تکثیر و بارور نمی‌شود؛ بلکه کروماتین موجود در دی. ان. آ. خود را در طول مرحله‌های جی‌1 و اس، دوبرابر می‌کند؛ ولی به‌جای گذر به مرحلة جی2، مرحلة جی1 تازه‌ای را آغازمی‌کند؛ و بدین ترتیب دورة تازه‌ای از دوبرابرشدن کروماتین آغازمی‌گردد. این گونه چرخة تولید، اولین بار در سال 1939 به وسیلة ‹گیتلر› تشریح‌شد.

با خواند این جمله ها اکنون متوجه میشوید که چرا قرآن کریم گفته بود "شما را در انعام(کروموزوم) کشت می‌دهیم و بارورمی‌سازیم؛ و قرآن کریم چه واژة نیکو و مناسبی در این زمینه برگزیده‌است: «ذرء» و چه جمله نیکوتری: «یذرؤکم فیه»."

 

 

 

 

‹پولیتن کروموزومها› ساختارهایی هستند که در برخی گونه‌های جانداران و گیاهان توده‌های ویژه‌ای از تخمها را به گونه‌ای اساسی بنیان‌می‌نهند؛ که با سیر موفقیت‌آمیز دوره‌های تکثیرشدن درون سلولی تقویت‌شده‌اند، و در نهایت از هر کروموزوم، به تعداد زیادی تکثیرمی‌شود. به همین دلیل آنها در روشن‌شدن روند سازوکار و ساختار خوب کروموزوم نقش بسیار مهمی دارند. (بویژه در تولید مثل مگس‌های دوبال)

 

چهارپایان ویژه، تکثیر به‌ روشی دیگر

از مقالة ‹پولیتن کروموزوم› که تاریخچة پژوهش‌های صورت‌گرفته برروی ‹کروموزوم‌های درشت› همراه با حدود هشتاد مقالة رفرانس است و دو پاراگراف آن ترجمه‌شد، مشخص‌گردید نظر به اینکه روند تکثیر کروموزوم‌های درشت، همانند دیگر کروموزوم‌ها نیست، پژوهشهای ژنتیکی پیرامون ‹کروموزومهای درشت›، بیشتر با عنوان ‹پولیتن کروموزم› که نشان دهندة روش تکثیری آنهاست، صورت‌می‌گیرد؛ در نتیجه نگارنده دریافت درصورتی‌که polytene chromosome را در اینترنت جست‌وجو کنیم، به ویژگی‌های ‹جاینت کروموزوم‌ها› و پژوهش‌های صورت‌گرفته پیرامون آنها بهتر و بیشتر آگاهی می‌یابیم. این کار صورت‌گرفت و دیده‌شد که چه بسیار پژوهشهایی‌ که پیرامون آنها صورت‌گرفته و می‌گیرد و متأسفانه ژنتیکدانان کشورمان نسبت به آنها چندان توجهی‌ ندارند.

******

 در یکی دیگر از روزهای دی‌ماه 84 نیز مقاله‌ای را از پایگاه بی‌. بی. سی. برگرفتم که رویGiant chromosome  بیشتر پژوهش‌کرده و بیشتر به موارد بیماری‌زا پرداخته‌است. این مقاله گذشته از اینکه نقش و اهمیت این نوع کروموزوم‌ها را بهتر می‌نمایاند، از نظر شناخت و درنتیجه درمان بیماریهای انسان، دستاوردهای بسیارمهمی را به همراه دارد.

موارد مهم را با زیرخط‌کردن مشخص‌کرده‌ام و موارد مهمتر بویژه از نظر شناخت بیماری‌ها در یکی از این نوع کروموزم‌ها (شمارة 5) را با خط کشی و نیز درشت‌کردن، نشان‌داده‌ام:

 

Human genome hits halfway mark

Human chromosomes: Cracking the human code has been a bit like painting a picture

Four years after publishing a draft of the human genetic sequence, researchers have hit the halfway mark in producing the "gold standard" version.

They have just published a detailed run-down of a 12th chromosome - known as chromosome five - which means there are just 12 left to complete.

Chromosome five is the largest so far, with 923 recorded genes, of which 66 are involved in human disease.

The chromosome, which was sequenced by US scientists, is detailed in Nature.

It is the second of three chromosomes that the Department of Energy Joint Genome Institute (JGI) has finalised in collaboration with colleagues at the Stanford Human Genome Center (SHGC)

 

Code breakers

Cracking the human code has been a bit like painting a picture. First comes a rough sketch followed by a slightly fuller version before, finally, the minute detail is added.

When the draft version of the human genome was unveiled in June 2000, 97% of the "book of life" had been read. Then, last year, scientists announced the decoding was almost 100% complete.

Now, several institutions around the world have divided up the 24 human chromosomes - the cellular structures into which DNA is wound - and are going through them with a fine-tooth comb for a final time, to fill gaps and correct errors.

  This extremely accurate sequence will be a powerful tool for scientists trying to understand human disease

Spencer Abraham, Secretary of Energy 

They are, as it were, dotting the I's and crossing the T's and giving the whole sequence a thorough spell-check.

"It is about getting everything in the right order," commented Dr Tim Hubbard, of the Human Genetics group at the Sanger Institute in Cambridge, UK.

"In the draft version there were 100,000 gaps in the whole genome. It was a small percentage of the sequence, but it meant you were uncertain about the order of the pieces.

"It is important for doing experiments to have the complete sequence - to have no gaps at all."

 

Giant chromosome

According to researchers at the JGI and SHGC, the landmark chromosome five is a genetic behemoth, containing key disease genes and a wealth of information about how humans evolved.

"This extremely accurate sequence will be a powerful tool for scientists trying to understand human disease," said US Secretary of Energy, Spencer Abraham.

 

DNA IN HUMAN CELLS

The double-stranded DNA molecule is held together by chemical components called bases

Adenine (A) bonds with thymine (T); cytosine(C) bonds with guanine (G)

These letters form the "code of life". There are estimated to be about 2.9 billion base-pairs in the human genome wound into 24 distinct bundles, or chromosomes

Written in the DNA are about 30,000 genes, which human cells use as starting templates to make proteins. These sophisticated molecules build and maintain our bodies 

The giant chromosome is made up of 180.9 million letters - the A's, T's, G's and C's that make up the genetic code.

Of the 923 genes that sit on chromosome five, 66 are known to be linked to disease when they go wrong. Another 14 diseases seem to be connected to chromosome five genes, but they have not been linked to specific genes yet.

Having a detailed picture of chromosome five will be an immense help to researchers investigating these illnesses.

"It is very useful to have a base sequence which you can then compare individuals to," Dr Hubbard told BBC News Online.

"Then you can look for key differences between people that do have the disease and people that don't have the disease."

 

Another feature of chromosome five will pique the interest of scientists studying the difference between humans and chimpanzees.

Despite great similarities between the genomes of the two species, there are some key structural variations.

In particular, one large section of chromosome five is flipped backwards in humans compared with chimps.

Such an inversion makes it impossible for the two chromosomes to pair up during reproduction, which could have driven a wedge between the evolving ancestral populations.

 

'Junk' DNA

It is not just the genes in chromosome five that the scientists are interested in. Volumes of genetic material lie in between the genes, which for a long time were dismissed as "junk" by researchers.

But on closer inspection, it seems this judgement was premature. The fact that sequences of junk were conserved for hundreds of generations suggests they have a function worth holding on to.

"Important genetic motifs gleaned from vast stretches of non-coding sequence have been found on chromosome five," said Eddy Rubin, JGI's director.

"Comparative studies conducted by our scientists of the vast gene desert... have shown these regions, conserved across many mammals, actually have a powerful regulatory influence."

Over the next few months, the remaining 12 human chromosomes should be completed to a final gold standard of accuracy.

Dr Hubbard concluded: "Several groups are working on the remaining chromosomes - tidying them up - and they should all be complete by the end of the year."

 

پیوست چهارپایان ویژه قرآنی :

متن انگلیسی پیرامون کروموزومهای درشت

مطلب زیر با عنوان ‹پلنت پلیتن کروموزوم› پژوهش‌هایی را که روی ‹کروموزوم‌های درشت› صورت‌گرفته، به گونه‌ای گسترده، بررسی‌می‌کند. این پژوهش در سال 2000 پایان پذیرفته‌ ولی تاریخ ورودش به اینترنت احتمالاً سال 2005 بوده است:

Plant polytene chromosome

Gianna Maria Griz Carvalheira

Laboratَrio de Citogenética Vegetal, ءrea de Genética, Departamento de Biologia, UFRPE, 52171-030 Recife, PE, Brasil. E-mail: carva@elogica.com.br

INTRODUCTION

Polytene chromosomes are structures found in highly specialized tissues in some animal and plant species, which are amplified through successive cycles of endoreduplication, finally producing several copies of each chromosome. For this reason, they have been very important in elucidating chromosome fine structure and physiology, especially in diptera.

In plants, polytene chromosomes have been observed in only a few species, and seemed to be restricted to ovary and immature seed tissues, e.g., in Phaseolus coccineus and P. vulgaris (Nagl, 1981), until relatively recently, when they were observed in the cells of the anther tapetum of Vigna unguiculata (Guerra and Carvalheira, 1994) and of some Phaseolus species (Carvalheira and Guerra, 1994). With the discovery of the polytenics in tapetum tissue, it was observed that in many other species of various angiosperm families the tapetal cells also display polytene, polyploid or both types of nuclei. In some species of Phaseolus and Vigna the polytenics are more clearly defined and, therefore, better suited to the study of this type of chromatin organization. It is, however, important to differentiate between the nuclear cycles that result in polyploid nuclei and those that produce polytene nuclei, because these two terms of the nuclear types are often used indiscriminately in the literature. In this paper some aspects of the occurrence of plant polytenes will be summarized along with the structure and function of these chromosomes.

ENDOMITOSIS AND ENDOREDUPLICATION

Nagl et al. (1985) described polytene chromosomes as giant chromosomes produced by changes in the mitotic cycle during the interphase stage. In such a modified nuclear cycle, the chromatin duplicates its DNA content during the G1 and S stages, but, instead of passing to the G2 stage, the nucleus initiates a new G1 phase, thus starting a new cycle of chromatin duplication. This type of cycle was first described in 1939 by Geitler, as occurring in the somatic cells of the insect Gerris lateralis (Painter and Reindorp, 1939; D''''''''''''Amato, 1964), and was named the endomitotic cycle because it develops within the nuclear envelop without either achromatic spindle formation or nuclear or cellular division (Nagl, 1970a; Brodsky and Uryvaeva, 1985). The term endomitosis is, however, generally used to describe the formation of both polyploid and polytene nuclei (q.v. Nagl, 1974). Nagl (1978, 1981, 1987) has suggested the term endocycle rather than endomitosis, and D''''''''''''Amato (1984) has adopted the term endomitotic and endoreduplication to distinguish between those that produce polyploid and polytene nuclei, respectively.

The endomitotic cycle (endomitosis) starts with a normal prophase (endoprophase), after which the chromosome contracts further (endometaphase), their sister chromatids separate from each other (endoanaphase) and decondense to assume the interphase nuclear structure, resulting in polyploid cells, with double the chromosome number (endopolyploidy) at the end of each cycle. The essential difference between endomitosis and the normal cell cycle is the absence of nuclear membrane dissolution in endomitosis, with the whole cycle occurring inside the nucleus. Such cycles have been observed in the anther tapetum of some angiosperm species, as in some Passiflora species and in Papaver rhoeas ( Figure 1a ).

The endoreduplication cycle differs from endomitosis because it results in polytene cells (cells with many identical paired chromatids). In the endoreduplication cycle, the chromatid number is duplicated, but they do not segregate, and after various endoreduplication cycles, larger and thicker chromosomes are produced, called polytenics. In the endoreduplication cycle, the condensation and decondensation stages are not evident (DAmato 1984, 1989), except in some cells where it is possible to see the chromocenter dispersion phase, known as the Z-phase (Nagl, 1970b, 1972; Cavallini et al., 1981).

Depending on the behavior of the sister chromatids, polytene nuclei can be divided into two structural types. The first, and most well studied, are the chromosomes of the larval cells of Drosophila, Chironomidae and other diptera (Ashburner, 1970; Brodsky and Uryvaeva, 1985). These polytenics are characterized by numerous transverse bands along their linear axis, produced by the exact pairing of sister chromatids and the intimate association of their chromomeres (Ashburner, 1970). The somatic pairing of homologous chromosomes gives the false impression that there has been a decrease in chromosome number, because each nucleus appears to contain the haploid number of giant chromosomes.

The other structural type of polytene nuclei also has the grouping of sister chromatid bundles resulting from several endoreduplication cycles, but in this case is characterized by the lack of any intimate pairing of the chromatids ( Figure 1b ). This nucleus type is observed more frequently, typical examples being found in the giant trophoblast cells of mammals (Nagl, 1985), the trophocit cells of many insects (Painter and Reindorp, 1939), some ovary tissues during the development of many angiosperms (Corsi et al., 1973; Nagl, 1976) and in the anther tapetum of some plant species (D''''''''''''Amato, 1984; Guerra and Carvalheira, 1994; Carvalheira and Guerra, 1994, 1998). In these nuclei, which can be recognized both by the large size of their chromocenters and by the diploid number of polytene chromosomes, the chromosome number does not appear to be reduced as in polytene-type nuclei. Another peculiar giant chromosome type, which likewise does not present somatic pairing, has been found in some ciliates (e.g., Stylonychia mytilus) that have a macronucleus with polytene chromosomes and a diploid micronucleus (Ammermann, 1971; Ammermann et al., 1974). The polytenics of these ciliates display band and interband patterns (also seen in Drosophila), but the macronucleus disintegrates after its development while the micronucleus remains active.

It is interesting to note that the endocycles are not processes of cell multiplication but are associated with cell differentiation and seem to be genetically controlled, with both endopolyploidy and polyteny leading to cell specialization in certain tissues. These nuclei have generally been observed in ephemeral tissues made up of only a few cells with intense metabolic activity, the main function of which is to provide nutritional support to vital organs during certain periods of development (e.g., the larval salivary glands of insects, the mammalian trophoblasts and the embryo suspensor cells of angiosperms). In such tissues, the cytoplasmatic volume and nuclei DNA content of the cells are increased by endomitosis or endoreduplication cycles (Nagl, 1974, 1985; Nagl et al., 1985).

OCCURRENCE OF POLYTENE CHROMOSOMES

Polytene nuclei were first observed in the larval salivary glands of Chironomidae, by Balbiani in 1881, but only at the beginning of the 1930s did Heitz and Bauer & Painter, independently and simultaneously, rediscover these enormous nuclei in the Malpighian tubules of Bibio hortulanus and in the larval salivary glands of Drosophila melanogaster, respectively (Ashburner, 1970). A few years later, Koltzoff, in 1934, and Bauer, in 1935, proposed the term polytenics for the giant chromosomes observed in these nuclei (Ashburner, 1970); polytene cells have since been described in many species (Nagl, 1978; Brodsky and Uryvaeva, 1985; Carvalheira and Guerra, 1998).

In plants, the first giant nuclei were observed by Osterwalder in 1898, in the enormous antipodal cells (antipodes) of the embryo sac of Aconitum (Nagl, 1981). However, as with the discovery of the giant cells of Chironomidae, the antipodal nuclei were largely forgotten for about 60 years. Only in 1956 did Tschermack-Woess and collaborators, during a reappraisal of the genus Aconitum genus and other plant species, recognize that the chromosomes observed in the antipodes were polytenics (Nagl, 1981). Unlike Drosophila polytene chromosomes, which present numerous bands and interbands, plant polytenics have a granular and fibril structure with no distinct bands (see Figure 1 ). This structure probably occurs because of the absence of intimate synapsis between the sister chromatids. It is also believed that the chromocenter dispersion phase (Z phase) has some influence on the morphology of plant polytenics, as it results in a slight separation of these chromatids (Nagl, 1970a). However, Nagl (1969a) has reported that in Phaseolus vulgaris the structure of polytene chromosomes of embryo suspensor cells seems to be altered when these cells are submitted to low temperatures, becoming partly compacted and forming bands similar to those seen in Drosophila. Such results have not been observed again, remaining the only report of plant polytenics with bands and interbands.

Since the discovery of the polytene nuclei in antipodes, many other tissues composed of polytene cells have also been described ( Table I ). It is interesting to note that, until very recently, the cells with polytene chromosomes seemed to be limited to ovary tissues (antipodal cells, synergids, endosperm and embryo suspensor cells); however, polytenics have now been observed in anther hair, glandular hair and anther tapetal cells ( Table I ).

Polyteny can also be induced in vitro and it has been found that the meristematic tissues of root tips and the cotyledon cells of some plant species are able to form polytene chromosomes when submitted to specific treatments, including high temperatures (Shang and Wang, 1991) or an appropriate amount of certain growth regulators (mainly auxin and cytocinin) in the medium (Marks and Davies, 1979; Therman and Murashige, 1984).

POLYTENE CHROMOSOMES OF EMBRYO SUSPENSOR

The most widely studied plant tissues with polytene cells is the Phaseolus embryo suspensor tissue. This tissue is found in the developing ovary of several angiosperm species (Esau, 1974). In P. coccineus and P. vulgaris, the suspensor is composed of about 200 cells, distributed between the basal and junction regions. The basal region is formed of about 20 giant mononucleate cells with a high level of polytenization, and with the DNA content of some cells being up to 8.192 C (Brady, 1973a,b). The junction region is composed of about 180 cells linking the basal region to the embryo proper. This last region possesses polyploid cells and/or cells with low polyteny level (Brady and Clutter, 1974).

The embryo suspensor provides nutritional support for the immature embryo, supplying proteins or synthesizing the substances necessary for embryo development (Schulz and Jensen, 1969). The underdevelopment of the cell wall of suspensor cells and their other structural characteristics indicate their secretory function in transporting nutrients through their membranes to the embryo (Nagl, 1974; Cionini, 1987). Analyses of the growth regulator level and transcription activity indicate that the suspensor tissue may play an important role during embryo ontogenesis, and seems to have a function in the synthesis of phytohormones needed for embryo development (Walbot et al., 1972; Clutter et al., 1974; Alpi et al., 1975; Cionini et al., 1976; Lorenzi et al., 1978).

The basal cells of the embryo suspensor tissue of P. coccineus display 22 polytene chromosomes that are up to 30 times larger than the mitotic ones (Nagl, 1974), the 11 chromosome pairs having been identified earlier by their heteropycnosis pattern (Nagl, 1967). All mitotic chromosomes present heterochromatic centromeric bands and some weak interstitial and terminal ones (Schweizer and Ambros, 1979). Staining with the fluorochromes CMA and DAPI has revealed that most of these bands are CMA+, although unlike mitotic bands they contain a small amount of DAPI+ heterochromatin (Schweizer, 1976). The difference observed in the fluorescent pattern has been attributed to the better structural resolution of the giant chromosomes.

In situ hybridization experiments, with isotopic (q.v. Schumann et al., 1990) and non-isotopic markers (q.v. Nenno et al., 1994), have contributed considerably to the characterization of polytenics. These techniques have permitted both the location of many of their DNA sequences and the study of their replication cycle (Brady and Clutter, 1974). For example, the cytolocalization of the ribosomal genes in P. coccineus has been demonstrated by the use of RNAr-H3, revealing RNA puff activity both in satellite pairs and in the heterochromatin of chromosome pairs, without satellites (Avanzi et al., 1971, 1972; Durante et al., 1977). Isotopic techniques have also made it possible to observe the extra nucleoli associated with the telomeres of the polytenics without satellites, suggesting the existence of amplification in this region (Nagl, 1973). Actually, the extra DNA synthesis in the polytenics of the Phaseolus suspensor occurs at the beginning of embryogenesis and not simultaneously with the endoreduplication cycles (Avanzi et al., 1970). Such gene amplification can occur both in the ribosomal cistrons and other regions of the genome and involves some polytene chromosome chromatids (Cremonini and Cionini, 1977). Some of these amplified regions are released from the polytenics to form micronucleoli. According to Avanzi et al. (1971), the micronucleoli are composed of a spherical mass of ribonucleoprotein covered by a layer of DNA. These micronucleoli seem to be associated with the intense metabolism of the suspensor basal cells (Nagl, 1973).

With advances in the fluorescence in situ hybridization technique (FISH), several other sequences have been located in plant polytene chromosomes. The first genic sequence hybridized in polytenics was that of the phaseolin group (Schumann et al., 1990; Nenno et al., 1993, 1994). This gene encodes the main seed storage protein of Phaseolus species. In these papers, it was demonstrated that the phaseolin gene seems to be located in chromosome 7 of P. coccineus. Another gene that has been located in the polytenics of P. vulgaris is the PGIP gene which encodes for polygalacturonase-inhibiting protein, a cell wall protein that specifically inhibits fungal endopolygalacturonases that are important during the early stages of plant pathogenesis. The PGIP gene has been located in a single region of the pericentromeric heterochromatin of the chromosome pair X, next to the euchromatin (Frediani et al., 1993).

The FISH technique as applied in polytene chromosomes has also been a useful tool to study gene evolution. Nagl (1991) hybridized telomeric DNA and the aromatase gene sequence (both from human genome) in P. coccineus and P. vulgaris polytenics. The results showed that these sequences also hybridize with plant chromosomes, supporting the hypothesis of the evolutionary conservation of important coding or non-encoding sequences throughout living organisms.

POLYTENE CHROMOSOMES OF ANTHER TAPETUM

Polytene chromosomes are also observed in other plant tissues, of which the anther tapetum tissue has made valuable contributions to the understanding of polytenics in angiosperms. This tissue is widely conserved, being found in groups ranging from bryophytes to angiosperms (Pacini and Franchi, 1993).

The tapetum is the innermost layer of the anther wall in close contact with the pollen grains ( Figure 1c ). It is generally composed of a simple layer of cells, characterized by the presence of dense cytoplasm and quite a well-developed nucleus (Echlin, 1971). During the differentiation of the tapetum, the cells increase both their cytoplasmatic and nuclear volume and then undergo autolysis and degenerate (Mascarenhas, 1990). The tapetum''''''''''''s function seems to be related to the maturation of pollen grain, with biochemical and cytological studies demonstrating the intense metabolic activity in its cells at the end of the tetrad stage and during exine formation (Rowley, 1993).

Until recently, most of the information on the nuclear development of the tapetal cells has come from studies of anther ontogenesis, based on histological analyses by optical or electronic microscopy. Cytological analyses in tapetum were done mainly by Cooper (1933), Brown (1949), Oksala and Therman (1977), Franceschi and Horner (1979), and D''''''''''''Amato (1984, 1989). However, cytogenetical analysis of the tapetal cells of Vigna species has revealed that this tissue can present very peculiar characteristics (Guerra and Carvalheira, 1994). Anther tapetum cells are characterized by the presence of endomitotic or endoreduplication cycles (Cooper, 1933; D''''''''''''Amato, 1984, 1989; Malallah et al, 1996). In species where the tapetum layer is composed of mononucleate cells, the increase in DNA content is generally a consequence of several endoreduplication cycles, while in species with bi- or multinucleate cells in the tapetum it is the endomitotic cycle which is responsible. In spite of the endoreduplication cycle producing mononucleate cells, tapetal binucleate cells with polytene nuclei have sometimes been observed (Carvalheira and Guerra, 1994).

In general, at the beginning of meiosis, the tapetal cells are mononucleate and diploid. During the tapetal differentiation, three cellular types can be observed, i.e. multinucleate cells, with more than one diploid nucleus (Malallah et al., 1996), mononucleate cells, with a single polyploid nuclei (Carvalheira, G.M.G. and Guerra, M., unpublished data), and mono- or binucleate cells, with one or two polytene nuclei (Carvalheira and Guerra, 1994). In each of these cases, the DNA content per cell is often increased, suggesting that this tissue needs several copies of most genes to supply specific substances for exine development and consequent pollen grain maturation.

The increase in the ploidy level is probably caused either by suppression of anaphase movement (producing a dumbbell-shaped polyploid interphase nucleus) or by the occurrence of endomitotic cycles (DAmato, 1989), while the increase in the number of nuclei per cell is due to the occurrence of one or more mitosis cycles without cytokinesis, resulting in multinucleate cells. Polytene nuclei, on the other hand, are formed through the endoreduplication cycles, and could remain in the interphase stage until the S phase, or progress to the prophase stage and return to a new G1 phase (Guerra and Carvalheira, 1994).

Analysis of both ploidy level and nuclear structures in tapetal cells in genera of several subfamilies has revealed that their chromatin structure may be constant at the genus level. In the family Scrophulariaceae, for example, some species of the genera Pedicularis and Melampyrum have tapetal cells with tetraploid nuclei, in the post-meiotic period. On the other hand, in this same family, the genera Odontetis, Euphrasia and Bellardia have nuclei with enormous chromocenters, but with the same ploidy level (Greilhuber, 1974).

Like the other plant tissue with polytene chromosomes, anther tapetum cells can display polytenics that vary in structure and morphology from species to species (q.v. Nagl, 1974, 1981; Carvalheira and Guerra, 1994, 1998). For example, polytene nuclei in the antipodes of Papaver rhoeas were classified by Nagl (1981) into four different types, i.e., nuclei with chromocenters associated with radial chromatin bundles; decondensed nuclei with isolated chromatin fibers; nuclei with condensed chromatin, and nuclei with polytenics proper. Similar variation was found in suspensor cells of Phaseolus embryos, where the polytenics sometimes had granular or fibril form, depending on the degree of contraction in the interchromomeres (Nagl, 1978).

According to Carvalheira and Guerra (1998), the chromatin structure of the polytene nuclei in tapetal cells may basically be divided into three different types:

1. Individualized polytene chromosomes whose chromatin bundles are heteropycnotic in the proximal region and dispersed in the distal region ( Figure 1d ), characteristic of Phaseolus coccineus, P. vulgaris (Carvalheira and Guerra, 1994), Vigna unguiculata (Guerra and Carvalheira, 1994; Carvalheira and Guerra; 1998), V. umbellata, V. radiata (Carvalheira and Guerra, 1998), Lathyrus and Sesbania marginata.

2. Polytene nuclei with chromocenters associated with the chromatin bundles ( Figure 1e ), found in most of the species analyzed, including Arachis hypogeae, Caesalpinea echinata, Clitoria cajanifolia, Crotalaria retusa, in three Habenaria species, Luffa cylindrica, Macroptilium peduncularis, two Phaseolus species (Carvalheira and Guerra, 1994), Pithecellobium dulce, Pisum sativum, Sophora tomentosa, Tropaeolum majus and Zomicarpa riedeliana.

3. Polytene nuclei with chromocenters unassociated with chromatin bundles ( Figure 1f ), a less frequent type, characteristic of Genipa americana, Indigofera hirsuta, Lupinus polyphyllus, Vigna vexillata (Carvalheira and Guerra, 1998) and Vicia sp.

Of these three types of chromatin organization, only the first is ideal for karyological analyses. The polytenics of this group is generally individualized and condensed. This type of chromatin organization has allowed good chromosome spreads to be obtained, facilitating the chromosome counting. In most Phaseolus and Vigna species analyzed that had this type of organization, it was possible to observe all 22 chromosomes of the karyotype (q.v. Guerra and Carvalheira, 1994; Carvalheira and Guerra, 1994).

Although this type of chromatin organization seems to be ideal for karyological analyses, these polytene chromosomes are somewhat smaller than those observed in the embryo suspensor of Phaseolus or those of some other genera (compare Figure 1b and d ). The largest polytenics of the anther tapetal cells (observed in Vigna unguiculata) are about 3.5 times bigger than the mitotic ones (Guerra and Carvalheira, 1994). The difference in size observed between polytenics of the embryo suspensor and anther tapetum is probably related to the number of endoreduplicated cells present in each of these tissues. As was mentioned previously, only a few basal cells undergo many endoreduplication cycles in the embryo suspensor tissue (Nagl, 1981), while in the anther tapetum hundreds of cells undergo this process. The low level of chromatin endoreduplication associated with a large number of cells seems to satisfy the metabolic necessities of both the anther tapetum and microspores. On the other hand, in the giant cell of the embryo suspensor, many endoreduplication cycles seem to be necessary to maintain the perfect functional and nutritional stage of the embryo, most of whose nutrients are supplied by the suspensor cell.

Although the polytenics of the anther tapetum are reduced in size, they have helped in the cytolocalization of DNA sequences. The first in situ hybridization in tapetal polytenics has revealed interesting data different from that which was observed in the polytene chromosomes of the embryo suspensor (Guerra and Kenton, 1996). As stated earlier, after in situ hybridization with the human telomere DNA probe, Nagl (1991) observed that the embryo suspensor polytenics of Phaseolus show a group of dots or compact bands at the telomeres. However, when synthetic telomere oligomers were hybridized with tapetum polytenics in an amphidiploid hybrid of Phaseolus, the oligo was preferentially located at, or close to, the chromocenters. These fluorescent areas were distributed randomly in the nuclear area, although association with the nuclear boundary was never observed (Guerra and Kenton, 1996). This may suggest that, at least in some aspects, the basic molecular organization of diploid nuclei in the anther tapetum is not completely conserved after the endoreduplication cycles. In fact, the loss of telomere association with the nuclear membrane has been documented in some special chromosome types, such as pigeon lampbrush chromosomes (Solovei and Macgregor, 1995) and Diptera polytenic chromosomes (Agar and Sedat, 1983). In plant polytene nuclei, however, this loss of telomeric association with the nuclear envelope was reported for the first time in anther tapetum polytenics (Guerra and Kenton, 1996).

These chromosomes have also helped in the identification of the 45S ribosomal sites in Phaseolus coccineus and Vigna unguiculata (Guerra et al., 1996), and 5S sites, in V. radiata and V. unguiculata (Carvalheira et al., 1998). In P. coccineus, six ribosomal sites were observed in tapetal cells, as has been reported previously (see Avanzi et al., 1972; Durante et al., 1977). Surprisingly, however, ten ribosomal sites were observed in V. unguiculata tapetum polytenics (Guerra et al., 1996), instead of one or two pairs as earlier reported (Frahm-Leliveld, 1965; Barone and Saccardo, 1990; Galasso et al., 1992). The large number of ribosomal sites observed in V. unguiculata when compared with Phaseolus has suggested that this increase in ribosomal sites may have been initiated by genetic mechanisms, such as gene conversion. According to Guerra et al. (1996), the variation in the number of rDNA sites observed between species of related taxa could be due to the differential amplification and fixation of rDNA sequences at different chromosomal sites. On the other hand, four 5S ribosomal sites were observed in V. radiata and V. unguiculata (Carvalheira et al., 1998), confirming the previous reports for V. unguiculata (Galasso et al., 1995), although these reports were first published for V. radiata.

In conclusion, although the polytenics of the anther tapetum are smaller than those in suspensor cells, both the large number of polytene cells in this tissue and their structural polytene morphology make these chromosomes more convenient for the study of plant polyteny and chromosome organization. Guerra and Carvalheira (1994) and Carvalheira and Guerra (1994, 1998) have suggested that such chromosomes present cycles of diffuse and condensed stages. The change from diffuse to condensed stage seems to depend on the endoreduplication level, genetic background and environmental factors. All these observations suggest that bundled polytene chromosomes of plants, at least in tapetal cells, are most probably the consequence of advanced endoreduplication cycles resulting in prophase or prophase-like chromosomes that may still be able to perform some DNA and RNA synthesis (Brady and Clutter, 1974; Cionini et al, 1982).

انسان نمادساز


انسان نمادساز!

 

(نمادسازی ویژه موجود اندیشمند است!)

اشاره

متن زیر گواه و سندی است علمی و مبتنی بر آزمایشهای فراوان بر نمادسازی انسان آن گونه که در آیات سی ام تا آخر سی و سوم سوره بقره خداوند کریم به آن اشاره کرده و تأکید کرده تنها آدم است(نه نخستیها و انسانماها نه جنها و نه فرشتگان) که میتواند آن گونه که خداوند در نظر داشته نمادسازی کند. ترجمه:

آن هنگام(پس از آماده شدن آدم برای ظهور در زمین) پرودگارت به فرشتگان گفت: "من قراردهنده ام در زمین جانشینی را.

فرشتگان گفتند: آیا قرارمیدهی در آن کسی را که در آن فسادمیکند و خونریزی میکند؟ و (حال آنکه) ما تسبیح گوییم به ستایشت و تقدیس میکنیم تو را.

خداوند گفت: من میدانم آنچه را که شما نمیدانید.

خداوند همه نامها را به آدم آموخت(بی آنکه چیزی نشانش دهد تا مصداق را بیابد. این نکته مهم است که مقاله زیر به این نکته نیز پرداخته است). سپس آنها را(چیزهایی را) به فرشتگان نشان داد. پس گفت خبردهید به من نامهای این چیزها را اگر راست میگویید.

فرشتگان گفتند: پاک و منزهی. ما دانشی از خود نداریم جز آنکه تو به ما آموخته باشی. تو همانا که دانا و حکیمی.

خداوند به آدم گفت: نام آن چیزها را به فرشتگان خبر بده(بگو). آنگاه که آدم نامهای آنها را به آگاهی فرشتگان رساند خداوند گفت آیا به شما نگفتم که من پنهانیهای کیهان را میدانم و میدانم آنچه را که آشکار کنید و یا پنهان سازید؟

روشنگری:

توانایی نامگذاری یعنی توان نمادسازی. نماد سازی پروسه پیچیده و گونه ای ارتباط است که تنها انسان بر آن توانایی دارد. البته جنها نیز توانایی نمادسازی و آفرینش دارند مانند نقاشی کردن یا نوشتن. ولی تفاوتی میان نمادسازی انسان و جنها وجود دارد که هنوز دانش انسان به آن دست نیافته و تنها خواست خداوند و هدف از آفرینش انسان به عنوان جانشین او بوده که این تفاوت اساسی را به وجود آورده است.

شاید یکی از آن دلایل این باشد که چون انسان یک نمادساز کامل است(علم آدم الاسماء کلها) و توان نمادسازی جنها محدود است آنها که پیش از آدم آفریده شده بودند توان برگرفتن روح الهی را نداشته اند و خداوند خواسته گونه ای را بیافریند که حامل کل نامها باشد و روح الهی را حمل کند و خلیفه الله شود.

نتیجه: با توجه به شواهدی که در پی خواهد آمد(گرچه تکامل جسمانی انسان را نمیتوان منکر شد) ولی این تکامل به آن گونه هم نبوده که ربطی به تکامل مغز او داشته باشد بلکه با توجه به آزمایشها و مستندهای علمی فیکسیسم در مورد انسان کنونی بیشتر صدق میکند. البته نباید از نظر دور داشت که با گذر زمان هر نسل انسانی از نسل پیش از خود از نظر فکری و تمدنی متکاملتر است و این تکامل ژنتیکی است و در میان نسل آدمیان تا آنگاه که بر روی کره زمین میزید ادامه خواهد داشت.

بخشهایی از مقاله که برجسته شده اند دربردارنده نکته های مهمی هستند.

در صورت علاقمندی به این مبحث نوشته جایگاه جنیان و آدمیان در سیر تکاملی انسان را بخوانید.

30/1/93 - احمد شماع زاده

 

ماهیت زبان و ارتباط در نخستیها

محمدمهدی میرلو

بی بی سی 14 آذر 92

پیچیدگی زبان به قدری است که جهت گیری بسیاری از تحقیقات صورت گرفته در این حوزه متوجه درک ساختار زبان و نحوه کاربرد آن است. محور اصلی این تحقیقات، قوانین دستوری است که ترکیب های مجاز عناصر زبانی را مشخص می کند؛ همچنین این مساله جالب و در عین حال قابل تامل مطرح می شود که آیا تنها انسان از زبان استفاده می کند یا برخی از حیوانات نیز این توانایی را دارند. بدون تردید پیش از پرداختن به بحث پیرامون ویژگی های زبان در گونه های غیر انسان باید میان ارتباط و زبان تمایز قایل شویم. کمتر کسی درباره این مساله تردید دارد که حیوانات به نحوی با هم ارتباط برقرار می کنند. سوال اصلی این است که آیا آنها این کار را به شیوه ای انجام می دهند که بتوان آن را به صورت معقول زبان نامید. به عبارت دیگر آیا امکان دارد حیوانی یاد بگیرد که با انسان از طریق زبان ارتباط برقرار کند؟ یا زبان انسان ویژگی هایی دارد که آن را چنان منحصربه فرد  کرده که اصلا  شبیه به هیچ نظام ارتباط دیگری نیست و در نتیجه حیوانات دیگر از یادگیری آن ناتوان هستند؟ در این مقاله به بررسی سوالات فوق و دیدگاه های مطرح در این زمینه خواهیم پرداخت.


مقدمه 
از سه دهه پیش تا کنون، محققان از طریق شواهدی که به دست آوردند اظهار کردند که میمون های بزرگ مانند  شمپانزه ها و گوریل ها در توانایی های زبانی شباهت های بسیاری با انسان دارند؛ هرچند این موضوع تا به امروز مورد بحث و مناقشه برانگیز بوده است. در واقع محققان  توافق دارند که میمون ها می توانند لغات بسیاری بیاموزند؛ اما نتایج در پاسخ به این سوالات گوناگون و متناقض بوده که میمون ها تا چه حد خودبه خود و خلاقانه زبان را به کار می برند (
Shaw,2004). رنه دکارت(René Descartes)، فیلسوف معروف فرانسوی، اظهار داشت زبان چیزی است که به طور کیفی انسان را از سایر انواع متمایز می کند(Descartes,1637). حال این سوال مطرح است که آیا گفته دکارت با توجه به تحقیقات حاضر در حوزه زبانشناسی می تواند درست باشد؟ زبانشناسی (linguistics) به عنوان علم مطالعه زبان تعریف می شود. حوزه مطالعات زبانشناسی بسیار متنوع و شامل رویکردهای نظری و روش شناسی مخصوص به خود است برای مثال رویکرد علوم اعصاب(neuroscience) از روش موردکاوی(case study) به بررسی نقایص زبانی بیمارانی می پردازد که به مغز آنها آسیب رسیده است. در رویکرد شبکه ای، چگونگی پردازش و ارایه اطلاعات زبانی مورد بررسی قرار می گیرد. از سوی دیگر برخی زبانشناسان مسیر مطالعه رشد انسان را مورد توجه قرار داده و نحوه رشد توانایی زبان و تغییرات آن در زمان و حین رشد فرد را بررسی می کنند. در رویکرد فلسفی پرسش هایی پیرامون ماهیت زبان و رابطه میان زبان و تفکر مطرح می شود(فردنبرگ،سیلورمن،1388). نکته قابل تامل این است که آنچه زبانشناسی را به عنوان یک علم منحصر به فرد معرفی می کند، رویکرد یا ابزارهایی نیست که در این علم به کار می رود بلکه موضوع تحقیق آنها زبان است.

ماهیت و ویژگیهای  زبان

اگرچه مساله تعریف زبان مساله مهمی است اما به دلیل عدم توافق بر ارایه تعریفی دقیق از ماهیت زبان بهتر است به جای تعریف بر خصوصیات مهم زبان تمرکز کنیم  که عبارتند از :


1- نقش ارتباطی(
communicative role): زبان امکان برقراری ارتباط میان افراد را فراهم می کند. مقصود از ارتباط یعنی تولید، انتقال و درک اطلاعات است. این ویژگی در راس ویژگی های زبان قرار دارد. به عبارت دیگر علاوه بر اینکه ارتباطی بودن آشکارترین ویژگی زبان است، چشمگیرترین ویژگی آن نیز هست. برای مثال فردی می تواند درباره آنچه فکر و احساس می کند،بنویسد به طوری که دیگران آن را بخوانند و افکار و احساسات آن فرد را درک کنند(استرنبرگ،1389).

2- قراردادی یا اختیاری بودن(arbitratines): ماهیت قراردادی بودن سامانه زبان به نبود استدلال خاص برای انتخاب یک نماد ویژه برای یک مفهوم اشاره دارد. زبان شامل مجموعه ای از عناصر نمادین (symbolic elements) است. نمادها نماینده چیزی هستند یا به آنها اشاره می کنند که عموما صداها، تصاویر یا کلمات هستند. صفت بارز نماد قراردادی بودن آن است(فردنبرگ،سیلورمن،1388). در واقع اختیاری یا قراردادی بودن زبان به این معناست که ارتباط طبیعی بین صورت زبان و معنای آن وجود ندارد (یول،1385). برای مثال ما با نگاه کردن به کلمه فارسی سگ، نمی توانیم از روی شکل آن بفهمیم که این کلمه دارای معنای طبیعی و آشکار است. در واقع صورت زبانی واژه سگ هیچ ارتباط طبیعی یا تصویری(iconic) با موجودی در جهان واقع ندارد که پشمالو و چهارپاست و پارس می کند.

3- ساختار منظم (regularly structured): ترتیب نمادها در زبان مبتنی بر مجموعه ای از قوانین بوده که بر آن حاکم است. در واقع این قوانین، نحوه ترکیب این نمادها را مشخص می کند و الگوی خاصی از آواها و حروف، کلمات معناداری را تشکیل می دهند. برای مثال در زبان انگلیسی صفت را قبل از اسم می آورند. ترکیب تصادفی آواها و حروف همیشه چنین نیست و از سوی دیگر الگوهای خاصی از کلمات، جمله ها، بندها و گفتمان معنادار را می سازند. بیشتر چیزهای دیگر بی معنا هستند (استرنبرگ،1389).
4- زایا بودن(
creativity): مولد بودن زبان به توانایی نامحدود و خلاق در تولید زبان اشاره دارد. عناصر نمادین زبان را می توان با هم ترکیب کرد و شمار بسیار زیادی جملات معنادار ساخت. خصوصیت زایایی زبان موجب قدرتمند شدن زبان می شود، چون هر فکری که به ذهن می رسد را می توان بیان کرد. از سوی دیگر این ویژگی به این مساله اشاره می کند که تعداد احتمالی گفته ها (جملات) در هر زبان بشری نامحدود است(یول،1385). جنبه زایایی زبان به صورت کاملا طبیعی منجر به ماهیت پویا و تکاملی آن می شود. با ورود کلمات جدید و تغییر قوانین دستوری، زبان مدام تغییر می کند که این نشانه پویایی زبان است. تصور اینکه زبان هرگز تغییر نمی کند به همان اندازه غیرقابل درک است که تصور کنیم مردم و محیط هرگز تغییر نمی کنند برای مثال انگلیسی جدیدی که امروزه افراد به وسیله آن  صحبت کنند،  صورت تکامل یافته انگلیسی میانه است که انگلیسی میانه از انگلیسی باستان گرفته است(استرنبرگ،1389).
5- جابه جایی(
displacement): انسان ها در فرآیند به کارگیری زبان می توانند به زمان گذشته و آینده اشاره کنند. به این ویژگی زبان جابه جایی می گویند. این ویژگی باعث می شود کاربر زبان بتواند درباره چیزها و وقایعی صحبت کنند که در محیط بلافصلشان نیست. درواقع ویژگی جابه جایی این امکان را به ما می دهد تا درباره چیزها و مکان هایی (برای مثال فرشتگان، پری ها، بابانوئل، سوپرمن) صحبت کنیم که از وجود آنها حتی مطمئن نیستیم(یول ،1385 ).

6- دوگانگی(duality): زبان انسان به طور همزمان در دو سطح یا لایه سازمان یافته است که این ویژگی را دوگانگی یا تولید مضاعف (doublearticulation) می نامند. در تولید گفتار، یک سطح فیزیکی وجود دارد که در آن سطح، اصوات منفرد از قبیل n,b,i تولید می شود که به تنهایی معنای ذاتی ندارند ولی در ترکیب خاصی مانند bin، سطح دیگری وجود دارد که یک معنا را محمول است که متفاوت از معنای ترکیب nib است. در نتیجه ما در یک سطح اصوات متمایز و در سطح دیگر معانی متفاوت را داریم. این ویژگی یکی از صرفه جویانه ترین ویژگی های زبان است زیرا با یک مجموعه محدود از اصوات منفصل می توان تعداد بسیار زیادی از ترکیبات صوتی (برای مثال کلمات) را بسازیم که از لحاظ معنا نیز متفاوت هستند(یول،1385).


ویژگیهای فوق موجب شده است که زبان را به یک نظام ارتباطی بی همتا تبدیل کند که کاملا از نظام های ارتباطی دیگر حیوانات متفاوت است. در نتیجه غیرمحتمل است که حیوانات دیگر بتوانند آن را بفهمند. برخی این واقعیت را نپذیرفته و مدعی هستند که مردم با زبان گفتاری با حیوانات حرف میزنند و مدعی هستند که حیوانات هرچه را که به آنها گفته میشود انجام میدهند.

در پاسخ به این افراد باید گفت آن حیوان رفتار خاصی را در پاسخ به یک محرک صوتی خاص یا صدا انجام میدهد ولی در واقع نمیفهمد که این کلمات در یک مجموعه صوتی به چه معنا هستند. از سوی دیگر ما هرگز حیوانات یک گونه را نمیتوانیم بیابیم که بتوانند علایم ارتباطی گونه های دیگر حیوانی را تولید کنند. ممکن است اسبی را در چراگاه گاوها برای مدت مدیدی نگه داشت اما حتی یک بار هم این اسب همانند گاوها ماغ نمیکشد.


زبان در نخستیها

این امر بدیهی است که حیوانات با یکدیگر ارتباط برقرار می کنند. تحقیقات نشان داده است که گونه های مختلف حیوانات برای ادامه حیات، فریادهای خاصی تولید می کنند که معانی مختلفی دارند. برای نمونه یک گونه از میمون ها در دشت آفریقا مجموعه ای از فریادهای خاص تولید می کنند که علامت انواع مختلف تهدیدات است. میمون ها از این فریادها در زمان غذا خوردن یا هنگام نزدیک بودن خطر استفاده می کنند. برای مثال اگر یک میمون متوجه عقابی شود که بالای سرشان پرواز می کند فریادی می کشد که موجب پراکنده شدن اعضا و فرار میمون ها به طرف درختان و پنهان کردن خود می شود. اگر ماری مشاهده شود، میمون فریاد دیگری می کشد که میمون های دیگر را وا می دارد روی پای خود بایستند و به اطراف نگاه کنند تا بتوانند محل مار را پیدا کنند (فردنبرگ، سیلورمن،1388). در واقع هریک از این فریادها معانی خاصی دارد و هر فریادی نشان دهنده یک خطر خاص برای گروه است؛ هرچند این فرآیند نوعی برقراری ارتباط است چون اطلاعات مربوط به یک رویداد، تولید، منتقل و درک می شوند ولی این شکل طبیعی ارتباط زبان نیست زیرا از یک سو این فریادها قراردادی نیستند و از سوی دیگر برای مرتب کردن این فریادها و تبدیل آنها به چیزی نظیر جمله، دستوری وجود ندارد و با ترکیب آنها نمی توان معنای جدیدی ابداع کرد.  در سال های اخیر این پرسش در کانون توجه پژوهشگران در حوزه زبان قرار گرفته که  آیا میمون ها می توانند برقراری ارتباط را با انسان ها یاد بگیرند؟ تلاش دانشمندان برای یافتن این سوال از دهه 60 آغاز شد؛ هنگامی که گزارش شد شمپانزه جوانی  به نام واشو تعلیم دیده علایم دستی ایجاد کند. از سوی دیگر این پرسش قابل طرح است که اگر حیوانات نمی توانند به تنهایی و به طور طبیعی از زبان استفاده کنند آیا امکان آموزش زبان به آنها وجود دارد؟ به عبارت دیگر توانایی زبانی آنها همانند توانایی انسان است؟ تحقیقات انجام شده در این حوزه روی نخستی ها (primates) مانند شمپانزه ها و گوریل ها متمرکز شده چون دارای قابلیت شناختی نسبتا پیشرفته ای هستند. برخی از تحقیقات صورت گرفته از دهه 60 به بعد عبارتند از :  تحقیق بر روی واشو(washoe): تا چند دهه پیش تلاش برای آموزش میمون ها برای صحبت کردن بارها با شکست مواجه شده است. گاردنر(Gardner) در سال 1969 تلاش کرد  بر دشواری های آموزش نخستی ها از طریق  آموزش زبان اشاره ای آمریکایی غلبه کند (Arbib, Liebal, Pika,2008). بئاتریکس و آلن گاردنر شمپانزه ای به نام واشو پرورش دادند و زبان اشاره ای آمریکایی را به او آموزش دادند. زبان اشاره ای آمریکایی تمامی ویژگی های اصلی زبان انسانی را داراست و بسیاری از کودکان ناشنوای مادرزاد آن را به عنوان زبان طبیعی اول خود یاد گرفته اند. روش آنها به این شکل بود که از همان شروع تحقیق، واشو را شبیه به یک کودک انسان در یک محیط راحت داخل منزل بزرگ کردند و او را وادار کردند حرکات دستی که نمایشگر یک شی خاص بود را تقلید کند یا انجام دهد. واشو 132 علامت را یاد گرفت و شواهدی از کاربرد خودانگیخته زبان را نشان داد. برای مثال هنگام دیدن مسواک در دستشویی بدون اینکه تحریک شود علامت آن را نشان می داد. همچنین واشو قادر بود کلمات را با هم ترکیب کند و برخی جملات را مانند open food drink(برای اینکه کسی در یخچال را باز کند) بسازد. این مساله نشان می داد که برخی از ترکیبات، ابداعات خود واشو بود. نکته قابل توجه این بود که واشو نشان داد تعداد بسیار بیشتری از اشاره ها را که نمی تواند تولید کند، می فهمد و قادر بود آن مکالمات ابتدایی را برقرار کند که عمدتا به صورت توالی سوال-جواب بود(یول،1385).


تحقیق بر روی کوکو(
koko): گروهی از محققان از تکنیک مشابه برای آموزش زبان اشاره ای آمریکایی به یک گوریل به نام کوکو استفاده کردند. کوکو گنجینه بزرگی از علایم را یاد گرفت و گزارش شد برای نشان دادن علایم به طور اختیاری از نحو استفاده می کند. مربیان کوکو ادعا کردند که او جوک هم تعریف می کند(فردنبرگ،سیلورمن،1388).


تحقیق روی سارا ((
sarah: در پژوهشی  دیوید پریماک، به جای علایم و حرکات دست از نشانه های پلاستیکی برای آموزش مهارت های زبانی به شمپانزه ای به نام سارا استفاده کرد (یول،1385). این نشانه ها شکل ها و رنگ های متفاوتی داشتند و نمایشگر کلمات و همچنین روابط بودند؛ نشانه هایی وجود داشت که نشانگر اسامی نظیر (apple)، افعالی مثل(give) و صفاتی مانند (red) و نشانه هایی که نشانگر روابطی مثل (same as) بودند. وقتی دو سیب را به سارا نشان دادند او نشانه (same as) را می ساخت و وقتی دو نشانه متفاوت یعنی نشانه سیب و پرتقال به او نشان داده شد، او نشانه تفاوت (different) را می ساخت. به نظر می رسد او درک ابتدایی از دستور جمله دارد، چون ظاهرا می توانست تفاوت میان جملاتی مانند «David  gives apple to sarah» و «Sarah gives apple to David » را بفهمد(فردنبرگ،سیلورمن،1388).


تحقیق روی کانزی (
Kanzi): سوزانساواج –رومباق با همکارانشان روی شمپانزه ای به نام کانزی تحقیق کردند که به نظر می رسید معنای واژه نگارها را یاد گرفته است. علاوه بر این کانزی ظاهرا می توانست پاره گفتارهای تک کلمه ای و جمله های ساده انسان را بفهمد. توانایی های کانزی کاملا پیشرفته بود. بدون اینکه از کانزی خواسته شود، او برای شناسایی اشیا، درخواست غذا و اعلان کاری خاص که می خواست بر عهده بگیرد از واژه نگارها استفاده می کرد. نکته قابل توجه این است که پس از آموزش زبان ساختاربندی شده تر، توانایی های او با توانایی های یک کودک دو و نیم ساله به نام آلیا مقایسه شد. به هر دو دستورات تازه ای داده و از آنها خواسته شد اشیا را حرکت دهند. در درک مطلب، هر دو توانایی های تقریبا یکسانی داشتند یعنی هر دو تقریبا 70 درصد دستورات را اجرا کردند. مهارت های زبانی که کانزی تولید می کرد بسیار محدود بود چون با مهارت های یک کودک یک و نیم ساله مطابق بود(فردنبرگ،سیلورمن،1388).


تحقیق روی نیم چیمپسکی(
Nim chimpsky): هربرت تریس در 1981 تحقیقی روی شمپانزه ای به نام نیم چیمپسکی (به تقلید از نام نوام چامسکی، زبانشناس برجسته) انجام داد.نیم چیمپسکی در طول چند سال بیش از 19000 پاره گفتار چند نشانه ای از نسخه اصلاح شده زبان اشاره ای آمریکایی ساخت. بیشتر پاره گفتارهای نیم،دو کلمه ای بود(استرنبرگ،1389).تحلیل دقیق تریس نشان داد که بیشتر پاره گفتارهایی که نیم به کار می برد در واقع تکرار چیزی است که نیم قبلا دیده بود. تریس نتیجه گرفت که باوجود آنچه پیشرفت مهمی به نظر می رسید، نیم حتی شکل ابتدایی بیان نحوی را نیز نشان نداده است. به عبارت دیگر، شمپانزه می تواند پاره گفتارهای یک یا حتی چند کلمه ای را تولید کند اما نه به صورت سازمان یافته نحوی. برای مثال، نیم علایم «به نیم موز بده» را با «موز بده به نیم» و «موز به نیم بده» جابه جا می کرد و این بدان معنا بود که شکل صحیح قواعد دستوری برای او رجحان نداشت. در نهایت تریس اعلام کرد که اگرچه شمپانزه ها می توانند پاره گفتارها را درک و تولید کنند، اما مهارت زبانی به آن معنا در آنها وجود ندارد که حتی انسان های بسیار خردسال دارند و ارتباط آنها فاقد ساخت و به ویژه ساخت چندگانه است(استرنبرگ،1389).علاوه بر این  شواهد اندکی وجود داشت که نشان می دهد میمون هایی که آموزش دیده اند نشانه ها را در جمله ترکیب کنند و عباراتی بسازند و همین طور به نظر بی فایده می رسید که بتوانند توانایی هایی را به سایر میمون ها آموزش دهند و منتقل کنند که در فرآیند آموزش  یاد گرفته اند (Cheney, Seyfarth,1997).
با بررسی نتایج پژوهش های فوق و تفاوت های قابل توجه در آنها می توان این احتمال را مطرح کرد که این امکان وجود دارد تفاوت  نتایج پژوهش ها می تواند ناشی از ویژگی شمپانزه خاص مورد مطالعه یا روش های مورد استفاده آنها باشد. به تعبیر استرنبرگ، زبان شمپانزه ممکن است نتواند تمام الزامات زبان را برآورده کند برای مثال  زبان مورد استفاده شمپانزه ها خود به خود کسب نمی شود بلکه آن را فقط از طریق برنامه های آموزشی بسیار ماهرانه و منظم می آموزند. در شرایط حاضر نمی توان اطمینان داشت که آیا شمپانزه ها به طور واقعی دامنه کاملی از توانایی های زبانی را نشان می دهند یا خیر؟ از سوی دیگر تحقیقات مورد اشاره با انتقادات جدی مواجه شده اند. برای مثال نقد جدی بر تحقیقات فوق این است که برخی از این حیوانات از طریق تقویت مثبت (
positvereinforcement) آموزش دیده اند. آنها برای علامت دادن درست یا کاربرد مناسب نشانه ها یا واژه نگارها یک جایزه می گرفتند که معمولا خوراکی بود. مشکل این است که حیوانات یک نماد را با یک مفهوم مرتبط می کنند چون این طور آموزش دیده اند و ممکن است نسبت به اینکه این نشانه دقیقا به چیزی دلالت می کند، آگاهی نداشته باشند. اگر این امر درست باشد، پس حیوانات جنبه قراردادی بودن زبان را نشان نمی دهند یعنی اینکه این نماد می تواند هرچیزی باشد و در عین حال نشانه مصداق (referent) باشد(فردنبرگ،سیلورمن،1388). وقتی حیوانی با ارایه سیب، نشانه سیب را انتخاب می کند، قراردادی بودن زبان را نشان نمی دهد، اما وقتی سیب وجود ندارد و از نشانه سیب استفاده می کند، قراردادی بودن زبان اثبات می شود.  از سوی دیگر این سوال مطرح است که جنبه ساختارمند بودن زبان در مورد حیوانات چگونه است؟ آیا حیوانات «نحو» را می فهمند  که زیربنای ساختمان جملات است؟ تاکنون تحقیقات انجام شده نشان می دهد نخستی ها جملات بسیار ساده را می فهمند و تولید می کنند یعنی جملاتی که در حد دو یا سه کلمه باشند. با توانایی تغییر آرایش کلمات و تبدیل آنها به ترکیب های جدیدی که بیانگر معانی جدید باشد، درک قوانین نحوی ثابت می شود که همان معیار زایایی زبان است که در بالا تعریف شد. اگر حیوانات این کار را انجام دهند این امر نشانگر قوانین نحوی است. هرب تراس(Herb Terrace) شواهدی ارایه کرد که داشتن درک ابتدایی یا توانایی به کارگیری نحو به وسیله برخی از حیوانات را رد می کند. تراس در مورد اینکه شمپانزه هایی مثل واشو معنای علایم و نمادها را میفهمند مردد است(فردنبرگ،سیلورمن،1388).


نتیجه گیری 

انسان ها برای برقراری ارتباط با یکدیگر زبان‌های متعددی به کار می‌برند که به طور قابل ملاحظه‌ای در اطلاعاتی تغییراتی ایجاد می‌کند که آنها به یکدیگر منتقل می‌کنند. در سال های اخیر شواهد تجربی برای این ارتباط علّی (causalrelation) مطرح شده و به این نکته اشاره می‌کند که زبان مادری یک شخص، واقعا شیوه‌ای را شکل می‌دهد که فرد درباره جنبه‌های متعدد جهان شامل مکان و زمان می‌اندیشد. همچنین یافته‌های اخیر به این نکته اشاره می‌کند که زبان‌ (language) بخش و جزئی از جنبه‌های تفکر (thought) و اهمیت آن فراتر از آن چیزی است که دانشمندان پیش از این تشخیص داده بودند(Boroditsky,2011).

در واقع نه تنها زبان‌ها بر آنچه تاثیر می‌گذارند که ما به یاد می‌آوریم بلکه ساختار زبان‌ها می‌تواند موجب سهولت یا دشواری یادگیری چیزهای جدید شود. از سه دهه پیش تا کنون محققان از طریق شواهدی که به دست آوردند، اظهار کردند که میمون های بزرگ مانند  شمپانزه ها و گوریل ها در توانایی های زبانی شباهت های بسیاری دارند؛ هرچند این موضوع مناقشه برانگیز بود. درواقع هرچند محققان  توافق داشتند که میمونها لغات بسیاری میتوانند بیاموزند اما نتایج در پاسخ به این سوالات که میمونها تا چه حد خود به خود و خلاقانه زبان را به کار میبرند گوناگون و متناقض بودند(Shaw,2004).

از سوی دیگر حیوانات قدرت صحبت کردن ندارند ولی میتوانند صداها و حرکات معناداری برای ارتباط با یکدیگر و تبادل هیجاناتشان ایجاد کنند. صداهای ایجاد شده در حیوانات توسط قسمتهایی از مغز کنترل میشود که سیستم لیمبیک(limbic) و آمیگدال amygdala نامیده میشوند. بیشتر صداهای حیوانات در نتیجه  تحریک هیجانی است(کیمیایی اسدی،1389). شایعترین صدایی که حیوانات در ابتدای زندگی ایجاد میکنند ضجه جدا شدن از مادرشان است. این ابتدایی ترین شکل ارتباطات اجتماعی سیستم لیمبیک است.

به تعبیر استرنبرگ نخستی ها، به ویژه شمپانزه ها، نویدبخش ترین بینش را درباره زبان غیرانسان ها به ما عرضه کرده اند. جین گودال(jane Goodall) کاوشگر مشهور شمپانزه های وحشی، جنبه های مختلف رفتار شمپانزه ها را مطالعه کرده که از آن جمله جنبه آواگری (vocalizations)است. گودال بسیاری از آنها را آشکارا ارتباطی تلقی میکند؛ اگرچه لزوما آن را معرف زبان نمیداند. برای مثال شمپانزه ها فریادهای خاصی دارند که نشانه مورد حمله واقع شدن است. فریاد دیگری برای صدا کردن شمپانزه های دیگر وجود دارد. با وجود این، به نظر میرسد مجموعه آواگری ارتباطی آنها کوچک، غیرمولد، از نظر ساختار محدود، فاقد پیچیدگی ساختاری و نسبتا غیرقراردادی است. همچنین به طور انگیخته کسب نشده است(استرنبرگ،1389).

به همین دلیل نمی توان از نگاه گودال ارتباطات شمپانزه ها را بر اساس معیارهای موجود یک زبان تلقی کرد. با وجود  مطالعات و پژوهشهای متعدد که در طول سالیان اخیر، بویژه سه دهه اخیر انجام گرفته است، همچنان این پرسش در کانون توجه قرار دارد که آیا تیره های غیر انسان میتوانند از زبان استفاده کنند، تردیدی وجود ندارد که مهارت های زبانی انسان بسیار فراتر از سایر تیره هایی است که تاکنون مورد مطالعه قرار گرفته است. نوام چامسکی زبانشناس برجسته در تحلیل پرسش بالا از تعبیر معجزه تکاملی استفاده کرده و بیان میکند: «اگر حیوان از ظرفیت مزیتی زیست شناختی چون زبان برخوردار بوده ولی تاکنون از آن استفاده نکرده، یک معجزه تکاملی خواهد بود، مثل یافتن یک جزیره با انسان هایی که بتوان به آنها پرواز کردن را آموخت» (استرنبرگ،1389،ص484).

تحقیقات مربوط به توانایی های زبان نخستی ها نشان میدهد که برخی از پژوهشگران معتقدند نخستیها دارای توانایی های قراردادی و جابه جایی در زبان هستند، چون معنای تعداد محدودی از نمادها را به طور مستقل از خود مصداق درک می کنند. این مساله چه در آموزش مستقیم (با غذا) چه غیرمستقیم (با تایید) صدق خواهد کرد که تکنیک های تقویت مستقیم استفاده می کند؛ اما باید جانب احتیاط را رعایت کرد و این نکته را مدنظر قرار داد که توانایی های قراردادی و جابه جایی فقط در درک مطلبهایی ثابت شد که در آن حیوانات نمادها را مشخص میکردند. در مطالعات قبلی که در آنها شمپانزه ها از زبان اشاره ای آمریکایی و نشانه ها استفاده میکردند، شواهد اندکی وجود داشت که نخستی ها معنای نمادها را هنگام تولید آنها میفهمیدند(استرنبرگ،1389).

از سوی دیگر نکته مهم این است که به نظر می رسد مهارت های زبانی نخستی ها به انتها میرسد چون نخستیها در مورد نحو(syntax)، بویژه در مورد تولید زبان، خیلی کم میفهمند. به عبارت دیگر، نخستی ها میدانند که ترکیب کلمات بر معنا تاثیر میگذارد ولی بیشتر نخستیها فقط جملاتی را تکرار میکنند که آموخته اند و تنوع بسیار کمی در ساخت زبان دارند. آنها هرگز در هیچ موردی به توانایی زایایی زبان انسان نمیرسند. همچنین نخستیها برخلاف انسانها وقتی مهارتهای زبانی را کسب کردند دیگر نمیتوانند این مهارت را به اعضای دیگر خود آموزش دهند.

جورج یول در کتاب بررسی زبان پیرامون پژوهش های صورت گرفته در حوزه تعلیم زبان به شمپانزه ها می نویسد:

«آیا واشو و کانزی می توانستند با استفاده از نظام ارتباطی نمادین که توسط انسان ها و نه شمپانزه ها برای آنها انتخاب شده بود تعامل برقرار کنند؟ جواب این سوال صراحتا مثبت است. آیا واشو و کانزی از لحاظ زبانی در سطحی قابل قیاس با کودک انسانی بودند که همسال آنها بود؟ جواب این سوال صراحتا منفی است. افزون بر این یکی از مهم ترین درس ها برای افرادی که در باب ماهیت زبان مطالعه می کنند این واقعیت است که اگرچه می توانیم برخی از ویژگی های اصلی زبان را توصیف کنیم ولی مسلما تعریفی کاملا عینی و قابل قبول هم از کاربرد زبان نداریم. می پنداریم وقتی که کودک انسان صداهای زبان گونه را ادا می کند، در واقع رشد زبان را می بینیم، ولی وقتی شمپانزه های کوچک علایم زبان گونه را در تعامل با انسان تولید می کنند، بسیاری از دانشمندان مایل نیستند که این را به عنوان کاربرد زبان قبول کنند. هنوز هم ملاک هایی که در هر مورد به کار می گیریم، به نظر نمی رسد یکسان باشد»( یول،،1385،ص 23).

با توجه به شواهد به دست آمده از آزمایش ها و پژوهش های مختلف در سه دهه اخیر روی شمپانزه ها، جورج یول معتقد است نوام چامسکی باید این ادعای خود را مبنی بر اینکه «یادگیری حتی حداقل مقدمات زبانی کاملا در ورای توانایی های یک میمون باهوش قرار دارد» بازنگری کند. به تعبیر یول هرچند امکان دارد گزارش هایی درباره دیدگاه شمپانزه از نظریه زبان شناختی نداشته باشیم، ولی مطمئنا در مورد توانایی آشکار آنها با برآمدن از پس «حداقل مقدمات زبانی» گزارش هایی خواهیم داشت. در مجموع اگر نگاهی دوباره به ویژگی های خاص زبانشناسان  مانند نقش ارتباطی، جابه جایی، خلاقیت، دوگانگی و قراردادی بودن بیندازیم و بخواهیم فارغ از سوگیری ها و با اتکا بر شواهد قطعی و نه حداقلی سخن بگوییم می توانیم تفاوت هایی پیرامون نوع ارتباطات حیوانات با یکدیگر و زبان انسان را با دقت بیشتری مورد تحلیل و ارزیابی قرار دهیم. برای نمونه در مورد ویژگی جابه جایی به نظر میرسد که ارتباط در حیوانات منحصرا مربوط به این لحظه، این مکان و زمان حال است.

بنابراین نمی توان از این ارتباط برای مرتبط کردن وقایع با زمان و مکان در گذشته بهره برد. وقتی سگی صدای GRRR را تولید می کند این فقط به معنای GRRR در همین زمان است چون سگ نمی تواند معنای GRRR را برای عطف به شب قبل یا در آن پارک به کار ببرد؛ هرچند برخی پژوهشگران مدعی شده اند که ارتباط میان زنبورها ویژگی جابه جایی دارد اما شواهد کافی برای این مدعا و اینکه آیا زنبورها به طور کامل این ویژگی را در ارتباطات خود دارند، ارایه نشده است. در مورد ویژگی اختیاری  یا همان قراردادی بودن زبان نیز میتوان چنین بیان کرد که هرگونه ارتباط در حیوانات شامل مجموعه ای ثابت و محدود از صوت های آوایی و اشاره ای است. بسیاری از این اشکال فقط در شرایط خاصی (برای مثال مشخص کردن قلمرو) و زمان های خاص ( برای مثال در فصل جفت یابی) به کار می روند.

 در مورد ویژگی خلاقیت و زایایی نیز بدیهی است که نظامهای ارتباطی موجودات دیگر فاقد انعطاف پذیری موجود در زبان انسان است. از سوی دیگر برای حیوانات مقدور نیست علایم جدیدی را برای انتقال دادن تجارب یا وقایع جدید ابداع کنند. به تعبیر لیمبر(2005) جنبه  خلاقانه زبان مساله ای نیست که به راحتی بتوان از آن چشم پوشی کرد در حالی که ارتباطات میان حیوانات فاقد این ویژگی برجسته است.

 

 

ناامیدی از رحمت خداوندگاری؟


ناامیدی از رحمت خداوندگاری؟

 

احمد شماع زاده

 

 

من کان یظن ان لن ینصره الله فی‌الدنیا والاخره فلیمدد بسبب الی‌السّماء ثم لیقطع فلینظر هل یذهبنّ کیده مایغیظ(حج: 15)

 

اگر تدبر در آیات و دانستن مفهوم اصلی آنها، بویژه آیاتی که فهمشان مشکل است، برعهده مفسر و مترجم نباشد، برعهدة کیست؟ و اگر برعهده آنهاست، پس این چه ترجمه‌ای است؟ آیا امثال استاد محمدمهدی فولادوند می‌خواهند این گونه ترجمه‌ها را جدا از متن قرآن به خورد خلق‌الله بدهند!؟

 

ترجمة الهی‌قمشه‌ای: آنکس که پندارد خدا هرگز او را(یعنی رسولش را در دنیا و آخرت) یاری نخواهدکرد(وی را بگو که) پس طنابی بسقف آسمان درآویز و بگردن افکن سپس طناب را ببرآنگاه بنگر که آیا این حیله و کید اوخشمش را از بین میبرد؟ (و جز بزیان او) اثری در عالم دارد؟

 

ترجمة استاد محمدمهدی فولادوند از این آیه:

هرکه می‌پندارد که خدا(پیامبرش) را در دنیا و آخرت هرگز یاری نخواهدکرد(بگو) طنابی به سوی سقف کشد(و خود را حلق‌آویزکند) سپس(آن را) ببرد. آنگاه بنگرد که آیا نیرنگش چیزی را که مایه خشم او شده، از میان خواهدبرد؟

 

ترجمة استاد بهاءالدین خرمشاهی از این آیه:

هرکس گمان می‌برد که خداوند هرگز او(پیامبر) را در دنیا و آخرت یاری‌نمی‌کند، ریسمانی به سقف خانه‌(اش) بندد(و به گردن اندازد) سپس(آن یا نفس خود را) ببرد و بنگرد آیا این تدبیر او مایة خشمش را از بین می‌برد؟

 

            ایشان در زیرنویس ترجمة خود به نقل از تفسیر میبدیدر توضیح این آیه آورده است: … هرکه این نپسندد و نخواهد،‌ گو سر بر دیوار می‌زن، یا خویشتن می‌کش.

 

از این سه ترجمه نتیجه میگیریم که بیشتر ترجمه ها تقلید کورکورانه از قدمای مفسرین است و خود مترجم اصولاً در درستی نظر مفسر شک و تردید روا نمیدارد!!

گویی آن مفسر از خود خداوند یا رسول او این نظر را نقل کرده است و اگر مفسر اشتباهی را مرتکب شده باشد هیچکس به خود جرأت نمیدهد به گونه دیگری آن آیه را ببیند و خطای آن مفسر نامدار را اعلام کند!!

 

پیگیری معنای آیه، با تدّبر در این مثال نسبتاً دور از ذهن:

 

تدبر را از آغاز سوره آغاز می‌کنیم:

ـ سورة حج با آیه‌ای که لرزه به اندام انسان می‌اندازد شروع‌می‌شود؛ که پیرامون رستاخیز است، و سپس به آفرینش و مراحل جنینی انسانمی‌پردازد؛ و نیز زندگی دوبارة طبیعت و انسان، و مجدداً سخن از رستاخیز و سپس مسائل دنیا و آخرت.

از آیه دهم به رابطة انسان و خدا و مسائلی که معمولاً در این زمینه پیش می‌آید، می‌پردازد. و دست آخر آیه مورد بحث(آیة پانزدهم) می‌آید؛ و با یک آیه دیگر(شانزدهم) که نتیجه‌گیری از مثال مندرج در آیة پانزدهم است، مطلب پایان می‌پذیرد و به مطلب دیگری پرداخته‌ می‌شود.

ـ در تمام این آیات، سخنی از پیامبر اکرم نیست، بویژه که از آیة دهم تا آخر شانزدهم، موضوع، رابطة انسان با خداست.

 

همان‌گونه که پیش از این نیز آورده‌ایم، ترجمه‌ها از تفسیرهایی گرفته‌شده‌اند که آنها نیز معمولاً نتیجة تدبر نیستند؛ بلکه نتیجة وام‌گیری از یکدیگرند،‌ که نتیجة آن را مشاهده‌ می‌کنیم، و همه ترجمه‌ها، تا اندازه‌ای به یک شکل‌اند.

 

ـ از نظر دستوری ضمیر هدر ینصره، به اسم یا ضمیر پیش از خود بازمی‌گردد؛ که در اینجا به منبازمی‌گردد. بنابراین، اگر تمام تفسیرها و ترجمه‌ها به نقل از اولین تفسیری که به این موضوع اشاره‌کرده، بگویند پرانتزهایی که بازشده و نام رسول خدا را به میان کشیده‌اند(که هیچ‌یک نگفته‌اند مطالب داخل پرانتزها را از کجا آورده‌اند) مبتنی بر روایتی است، بازهم  نباید به هیچ‌یک توجه‌کنیم؛ زیرا از خود معصومین آمده که اگر حدیثی از ما نقل شد و با قرآن منافات داشت آن را به دیوار زنید(ردکنید).

 

ـ از آغاز این سوره تا آخر آیة شانزده، نه تنها سخن از رسول خدا نیست، بلکه نباید باشد؛ زیرا آیه‌هایی که یاری خدا به رسول را می‌رسانند، معمولاً  مربوط به زمانی است که رسول اکرم با مشرکین به جنگ یا جدل می‌پردازد. ولی این آیات به رابطة انسان با خدا می‌پردازند، و از این آیه، نیاز رسول اکرم به یاری خدا برنمی‌آید.

 

ـ یاری‌رساندن خداوند بنده‌اش را در آخرت، به پیامبر اکرم مربوط نمی‌شود،‌ و آیاتی که مربوط به یاری‌رساندن خداوند به رسول اکرم است، معمولاً دنیایی هستند، و این ما هستیم که به یاری خداوند هم در دنیا و هم در آخرت بسیار نیازمندیم.

 

ـ کدام انسان مؤمن یا کافر، و عاقل یا حتا ابلهی تصورمی‌کند خدایی که پیامبری را برای هدایت مردم فرستاده، پیامبرش را در دنیا و در آخرت، یاری نمی‌رساند؟ تا برای آن، آیه نازل‌کند که نه، ما پیامبر خود را یاری‌می‌رسانیم؛ آنهم با این مثال!

 

ـ یاری رساندن خداوند رسولش را در زمان‌ لزوم،‌ از بدیهیات است، و تصور وجود شخصی که این امر بدیهی را نداند، تقریباً‌ از محالات است.

 

ـ چگونه می‌توان تنابی را به سقف آسمان!(شادروان الهی‌قمشه‌ای) یا به سقف(استاد فولادوند) و یا به سقف خانه(استاد خرمشاهی) زد، تا شخصی با آن بخواهد خودکشی‌کند، و بعد تناب را ببرد؟

اگر کسی بخواهد خودکشی کند، نباید که تناب را ببرد!! بلکه باید زیر پای خود را خالی‌‌کند. بعد هم خودکشته، چگونه نظاره‌گر خودکشی‌ و عمل پیشین خود می‌تواند باشد!!؟ و اگر خود را نکشد بلکه تناب را به سقف وصل‌کند، به گردن‌اندازد،‌ بعد ببرد، این چه کار احمقانه و بیهوده‌ای است که ما به خداوند نسبتش میدهیم؟ و از همه مهمتر اینکه، از این کارها چه سودی به چه کسی می‌رسد؟ با این گونه خزعبلات، کارهای بیهوده‌ای را به ساحت قرآن کریم نسبت‌داده‌ایم.

ترجمه و تفسیرهایمان باید بر مبنای تدبر باشد، و نه تکرار سخن پیشینیان!!

 

ـ در انتهای آیه‌های ماقبل و مابعد آیة مورد بحث آمده‌است: ان‌الله یفعل مایرید، و و ان‌الله یهدی من یرید›. پس سخن بر سر رابطة انسان با خدا و هدایت انسان به وسیلة خداوند است، و این مثال قرآنی برای هدایت انسان است، و نه سخنی بیهوده.

 

ـ در این مثال، خداوند دارد از یک مؤمن سخن‌ می‌گوید و نه یک کافر، زیرا طبق خود آیه‌، شخص مورد اشاره(که با ضمیر منمشخص‌شده)، به خدا و آخرت ایمان دارد.

 

ـ این مثال قرآن، مربوط به برخی مؤمنین است که هرگاه با کارهای ناشایست خود خشم خداوند را دراورند، تصورمی‌کنند‌ دنیا به آخر رسیده و در دنیا و آخرت از رحمت خداوند به‌دورمانده‌اند؛ و در نتیجه از کرده خود خشمگین‌، و از رحمت خداوند ناامید می‌شوند.

 

ـ خداوند برای ناامیدنشدن از درگاه خود، مثالی آورده و می‌فرماید برای اینکه ثابت‌شود چنین کسی نباید ناامیدشود،‌ پس باید که دست‌یازد به سبب و وسیله‌ای که او را به آسمان(ملک خداوند) پیونددهد: فلیمدد بسبب الی‌السّماء ثم لیقطع. المنجد:

 

مدّ: مدّ بالشّیء = بسطه، اخذه = دست یازیدن 

سبب = ما یتوصل الی غیره = آنچه که انسان را به غیر خود پیوندمی‌دهد.

قطع‌الرجل = ‹عجزاو یئسـ قطع به = حیل بینه و بین ما یؤمله

 

ـ پس از گذشت مدتی(ثم نشان از گذر زمان دارد) و نتیجه نگرفتن از ارتباطش، آن وسیلة ارتباطی را قطع‌کند، یعنی ناامیدشود، یا میان خود و آنچه را که آرزو دارد و برای رسیدن به آن به آسمان متوسل‌شده، مانع‌ ایجادکند. پس بنگرد آیا چاره‌اندیشی‌اش آنچه را که موجب خشمش شده،‌ از میان می‌برد؟

 

ـ خداوند با این مثال می‌خواهد به یک فرد ناامید، بگوید همان گونه که هرگاه ارتباطی ایجادکنی و  پس از مدتی نتیجه‌ای نگیری و ناامید و خشمگین شوی، و آن رابطه را قطع‌کنی، خشمت از میان نمی‌‌رود، پس خداوند بخشنده،‌ که تو را و دیگر آدم‌ها و هستی را با عشق و شوق، و با منظوری ویژه آفریده، کاری نمی‌کند که خشمش از کردار بندگانش باقی‌ بماند؛ بویژه که رابطة او آسمان به زمین است، و نه زمین به آسمان؛ پس چگونه رابطه خود را با بنده‌اش قطع‌‌کند، و او را یاری‌نرساند؟ بلکه او را یاری‌می‌رساند و می‌پروراند؛ مگر هنگامی که بنده‌اش به او شرک بورزد؛ و به همین دلیل یفعل ما یرید ویهدی من یرید است

 

این بود نتیجة تدبر در این مثالی که فهمش کمی‌ مشکل بود، ولی از آنجا که برخی آیات قرآن برخی دیگر را تفسیرمی‌کنند، با یاری خود خداوند تا اندازه‌ای، معنای درست آن را مطابق با مفهوم کلی موضوع،‌ دریافتیم.

 

و اینجاست که نظر خود را دوباره تکرارمی‌کنم که قرآن، بویژه برخی مفاهیم آن، ترجمه‌پذیر نیست.

سخن آخر آنکه، مثال‌های قرآنی تنها یک یا چند هدف ندارند؛ بلکه خداوند به گونه‌ای آنها را آورده(و به همین دلیل برخی آیه ها برای ما ‌فهمش سخت ‌شده) تا حتا هنرمندان بتوانند این مثال‌ها را به‌تصویرکشند و آثار خود را در سایة قرآن جهانی‌کنند.

 

رخدادهای سترگ کیهانشانسی و خداشناسی


رخدادهای سترگ کیهانشانسی و خداشناسی

 

1905: البرت اینشتاین نظریة نسبیت را مطرح می‌سازد.

1912: ارنست رادفورد هستة اتم را کشف‌می‌کند.

1924: هایزنبرگ آلمانی و شرودینگر اتریشی و دیراک انگلیسی معادلات اصلی مکانیک کوانتم را بر پایه اصل عدم قطعیت ‌میسازند.

1929: ادوین هابل آشکارمی‌سازد که کیهان در حال انبساط است.

1950: فرد هویل برواژة مهبانگ را میسازد و به کارمیبرد.

1965: ویلسون و پیزیاس میکروموج تابش زمینة کیهانی را کشف‌ میکنند.

1981: الن گات نخستین نظریة تورم کیهانی را ارائه‌می‌دهد.

1989: ماهواره Cobe یا کاوشگر زمینه کیهانی که در نوامبر 1989 از پایگاه وایندنبرگ کالیفرنیا به فضا پرتاب شده بود در آخرین روزهای این سال نظریه مهبانگ را تأیید و آن را به یک اصل کیهانشناسی تبدیل میکند.

 

نظریة نسبیت خاص اینشتین یا نظریة نسبی‌بودن زمان برای ناظرین مختلف یکی از اساسی‌ترین دلایل اثبات بی‌زمانی برای خداونداست. زیرا او ناظرالناظرین است. آفریننده زمان و مکان(جای و گاه)است. پس فوق زمان است و زمان نمی‌تواند بر او بگذرد. این موضوع پاسخی است برای کسانی که چون خدا را خوب نشناخته و از ذات و صفات او آگاهی ندارند پرسشهایی را مطرح میکنند که فریب دهنده اند و برخی را گمراه میکنند. برای مثال می‌گویند اگر خداوند می‌دانست چنین می‌شود، چرا چنین کرد گویی از خداوند طلبکارند.

 

آیا آنان نمی‌دانند که خداوند قانون دارد و برطبق آن عمل می‌کند؟ آنگاه که خداوند می‌گوید اگر چنین کنی چنان می‌بینی یا می‌شوی، همه را می‌بیند و می‌گوید؛‌ نه‌ اینکه پیش‌گویی کند؛پیش‌گویی درکار نیست. برای درک بهتر موضوع به دستاوردهای نسبیت خاص(از کتاب مفهوم نسبیت اینشتین  نوشته برتراند راسل چاپ سوم سال 1340 ترجمة مرتضی طلوعی)روی میآوریم:

اندازه‌گیری‌های فواصل و زمان‌ها مستقیماً خواص اشیاء مورد اندازه‌گیری را فاش نمی‌کنند، بلکه روابط  اشیاء مزبور را نسبت به “اندازه‌گیرنده” ظاهر می‌سازند. لذا آنچه که “مشاهده” می‌تواند برای ما در بارة جهان فیزیکی ظاهر سازد، مجمل‌تر و خلاصه‌تر از آن است که ما تاکنون باورکرده‌بودیم. ص: 140

چون فواصل زمانی و مکانی نسبت به ناظرین مختلف متغیر است، می‌توانیم کمیتی به نام فاصل (interval) را از آنها نتیجه‌گیری کنیم که برای همة ناظرین اندازه‌ای ثابت و بی‌دگرگونی است. «فاصل» در تئوری نسبیت خاص به صورت زیر به ‌دست می‌آید: مربع مسافت بین دو واقعه و مربع مسافتی را که نور می‌تواند در فاصلة زمانی بین آن دو واقعه سیرکند را معین می‌کنیم. سپس انداره کوچکتر به دست آمده را از اندازه بزرگتر کم می‌کنیم. نتیجه به‌دست آمده مربع فاصل مابین آن دو واقعه است. که با جذرگرفتن، خود فاصل به دست می‌آید. فاصل برای همة ناظرین مقدار ثابتی است و مبین و نمایندة یک رابطة فیزیکی خالص و درستی مابین دو واقعه است که نه فاصله زمانی و نه فاصله مکانی به تنهایی شایستگی و کفایت چنین نمایندگی را ندارد.

        هنگامی که فاصلة‌ زمانی بین دو واقعه بیشتر ازمدتی است که برای سیر نور از محل یکی از آن وقایع تا محل دیگری لازم است، فاصل “شبیه زمان” است. و در عکس این حالت، فاصل “شبیه مکان” است. هنگامی که زمان بین دو واقعه درست مساوی مدت زمانی است که برای سیر نور از محل یک واقعه تا محل واقعة دیگر لازم است، فاصل صفر است. صص: 116و 117

 

در این زمینه به سخن قرآن کریم گوش هوش میسپاریم که در آیه پنج سوره سجده یک کار کیهانی را هزار سال زمینی براورد کرده است(الف سنه مما تعدون).

 

نکته ها:

-         اگر ناظری(همچون پیامبر اکرم اسلام در شب معراج) در هفت لایه حلزون کیهانی سیر کند هرچه به سوی مرکز حلزون کیهانی پیش رود زمان کندتر میشود تا آنگاه که به مرکز حلزون رسد که در آنجا زمان صفر است.

 

-         معراج از راه درهای کیهان که در قرآن کریم ابواب السماء و در دانش سیاهچاله نامیده میشوند انجام گرفته است. ولی هنوز کسی از چگونگی وقوع این سیروسفر آگاهی ندارد. احتمال میرود معراج جسمانی رسول اکرم بدین گونه رخ داده باشد که خداوند با ایجاد یک دالان(کانال) ویژه نیروی گریز از مرکز را برای ایشان به گونه ای استثنایی بی اثر کرده باشد. درغیر این صورت حتی سیر روحانی با وجود نیروی گریز از مرکز در لایه های کیهان  شدنی نیست. زیرا سرعت روح همانند سرعت نور است و حتی معراج روحانی با وجود نیروی گریز از مرکز سالها به طول میانجامد.(موضوع جهانهای چندبعدی نیز در این زمینه میتواند مد نظر قرارگیرد.)

احمد شماع زاده 22/8/1391